热带地理 ›› 2020, Vol. 40 ›› Issue (2): 175-183.doi: 10.13284/j.cnki.rddl.003241
• “地理空间智能技术及应用”专题 • 下一篇
李丹1, 黄钰辉2, 孙中宇1, 张卫强2, 甘先华2, 王佐霖3, 孙红斌3, 杨龙1()
收稿日期:
2019-06-25
修回日期:
2020-04-21
出版日期:
2020-03-10
发布日期:
2020-05-15
通讯作者:
杨龙
E-mail:yanglong@gdas.ac.cn
作者简介:
李丹(1985–),女,河南通许人,副研究员,主要从事遥感技术应用研究,(E-mail) lidan@gdas.ac.cm。
基金资助:
Li Dan1, Huang Yuhui2, Sun Zhongyu1, Zhang Weiqiang2, Gan Xianhua2, Wang Zuolin3, Sun Hongbin3, Yang Long1()
Received:
2019-06-25
Revised:
2020-04-21
Online:
2020-03-10
Published:
2020-05-15
Contact:
Yang Long
E-mail:yanglong@gdas.ac.cn
摘要:
以深圳市坝光银叶园和大鹏半岛自然保护区19种湿地森林树种叶片可见光近红外光谱与全氮(Total Nitrogen, TN)、全磷(Total Phosphorus, TP)、全钾(Total Potassium, TK)含量关系为基础,分析了11种光谱预处理方式、3种光谱数据降维方式和2种建模方法对模型精度的影响。结果表明,标准正态变换(Standard Normal Variate, SNV)结合一阶导数(first derivative, 1 st)预处理方式下模型精度最高;主成分分析(Principal Component Analysis, PCA)降维处理对模型的降维效果最好;支持向量回归(Support Vector Regression, SVR)的建模效果精度最高。对于TN、TP、TK最佳模型的预测确定系数均在0.80以上,模型RPD值也在2.0以上,SVR模型可以用于树种叶片TN、TP、TK的快速检测。
中图分类号:
李丹, 黄钰辉, 孙中宇, 张卫强, 甘先华, 王佐霖, 孙红斌, 杨龙. 不同树种叶片养分含量提取的高光谱方法及精度评价[J]. 热带地理, 2020, 40(2): 175-183.
Li Dan, Huang Yuhui, Sun Zhongyu, Zhang Weiqiang, Gan Xianhua, Wang Zuolin, Sun Hongbin, Yang Long. Development and Accuracy Assessment of a Hyperspectral Data-Based Model for Leaf Nutrient Content Extraction in Wetland Tree Species[J]. Tropical Geography, 2020, 40(2): 175-183.
表1
本研究使用的树种类别"
序号 | 物种 | 采集数量/棵 | 序号 | 物种 | 采集数量/棵 |
---|---|---|---|---|---|
1 | 多毛茜草 (Aidia pycnantha) | 5 | 11 | 小叶青冈 (Quercus myrsinifolia) | 5 |
2 | 枫香树 (Liquidambar formosana) | 5 | 12 | 细叶榕 (Ficus microcarpa) | 5 |
3 | 海杧果 (Cerbera) | 5 | 13 | 鸭脚木 (Schefflera actinophylla) | 5 |
4 | 红枝蒲桃 (Syzygium rehderianum) | 5 | 14 | 银柴 (Aporosa dioica) | 5 |
5 | 黄樟 (Cinnamomum porrectum) | 5 | 15 | 阴香 (Heritiera Littoralis) | 6 |
6 | 假苹婆 (Sterculia lanceolata) | 5 | 16 | 银叶树 (Cinnamomum burmannii) | 11 |
7 | 马樱丹 (Lantana camara) | 5 | 17 | 鱼骨木 (Canthium dicoccum) | 5 |
8 | 山乌桕 (Sapium discolor) | 5 | 18 | 浙江润楠 (Machilus chekiangensis) | 5 |
9 | 薇甘菊 (Mikania micrantha) | 15 | 19 | 岭南山竹子 (Garcinia oblongifolia Champ. ex Benth.) | 5 |
10 | 五爪金龙 (Ipomoea cairica) | 15 |
表2
各养分含量描述性统计分析"
数据集 | 样本数/个 | 养分含量/(g·kg-1) | ||||
---|---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 标准差 | |||
TN | 总样本 | 122 | 8.56 | 40.48 | 20.42 | 7.38 |
建模集 | 91 | 8.56 | 40.48 | 20.70 | 7.49 | |
预测集 | 31 | 9.36 | 35.68 | 19.40 | 6.92 | |
TP | 总样本 | 122 | 0.44 | 8.83 | 2.05 | 1.71 |
建模集 | 91 | 0.44 | 8.83 | 2.11 | 1.75 | |
预测集 | 31 | 0.45 | 6.01 | 1.92 | 1.56 | |
TK | 总样本 | 122 | 3.31 | 44.61 | 15.30 | 10.82 |
建模集 | 91 | 3.31 | 44.61 | 15.68 | 11.15 | |
预测集 | 31 | 3.40 | 40.50 | 14.30 | 9.71 |
表3
不同建模方法下TN、TP和TK模型的精度"
元素 | 建模方法 | RMSEc/% | RMSEcv/% | RMSEp/% | RPD | |||
---|---|---|---|---|---|---|---|---|
TN | PLSR_average | 0.68 | 0.64 | 4.14 | 4.46 | 0.69 | 4.39 | 1.79 |
PLSR_best_SNV+1st _PCA | 0.83 | 0.80 | 3.04 | 3.36 | 0.82 | 2.96 | 2.38 | |
SVR _average | 0.77 | 0.70 | 3.61 | 4.12 | 0.75 | 3.60 | 2.02 | |
SVR _best_SNV+1st _PCA | 0.86 | 0.80 | 2.85 | 3.36 | 0.85 | 2.82 | 2.50 | |
PLSR_all_SNV+1st | 0.82 | 0.78 | 3.17 | 3.56 | 0.80 | 3.10 | 2.23 | |
SVR _all_SNV_1st | 0.82 | 0.70 | 3.41 | 4.16 | 0.84 | 2.98 | 2.32 | |
TP | PLSR_average | 0.57 | 0.50 | 1.13 | 1.24 | 0.61 | 1.51 | 1.60 |
PLSR_best_SNV+1st _PCA | 0.74 | 0.68 | 0.91 | 0.99 | 0.82 | 0.68 | 2.35 | |
SVR _average | 0.68 | 0.58 | 1.03 | 1.17 | 0.70 | 0.87 | 1.88 | |
SVR _best_SNV+1st _PCA | 0.76 | 0.67 | 0.88 | 1.03 | 0.84 | 0.65 | 2.42 | |
PLSR_all_SNV_1st | 0.82 | 0.70 | 0.75 | 0.97 | 0.74 | 0.86 | 1.81 | |
SVR _all_SNV_1st | 0.78 | 0.67 | 0.91 | 1.04 | 0.90 | 0.55 | 2.83 | |
TK | PLSR_average | 0.60 | 0.55 | 6.96 | 7.51 | 0.64 | 6.08 | 1.69 |
PLSR_best_SNV+1st _PCA | 0.74 | 0.70 | 5.64 | 6.08 | 0.81 | 4.42 | 2.23 | |
SVR _average | 0.68 | 0.59 | 6.11 | 6.94 | 0.69 | 5.25 | 1.95 | |
SVR _best_SNV+1st _PCA | 0.78 | 0.70 | 5.37 | 6.18 | 0.85 | 3.80 | 2.60 | |
PLSR_all_SNV_1st | 0.73 | 0.66 | 5.80 | 6.56 | 0.77 | 4.48 | 2.17 | |
SVR _all_SNV_1st | 0.79 | 0.69 | 5.21 | 6.27 | 0.85 | 3.91 | 2.48 |
[1] | Barnes R J, Dhanoa M S and Lister Susan J . 1989. Standard Normal Variate Transformation and Detrending of Near Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5) : 772. |
[2] | Chang C W, Laird D A, Mausbach M J and Hurburgh C R . 2001. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 65(2):480-490. |
[3] | 褚小立, 袁洪福, 陆婉珍 . 2004. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 16(4):528-564. |
[ Chu Xiaoli, Yuan Hongfu and Lu Wanzhen . 2004. Progress and Application of Spectral Data Pretreatment and Wavelength Selection Methods in NIR Analytical Technique. Progress in Chemistry, 16(4):528-564. ] | |
[4] | 褚西鹏, 葛宏立, 陈柯萍 . 2012. 基于小波包变换的叶片高光谱数据的树种分类. 光谱实验室, 29(5):2794-2798. |
[ Chu Xipeng, Ge Hongli and Chen Keping . 2012. Tree Species Classification Basing on Leaf-Level Hyperspectral Data from Wavelet Packets Transform. Chinese Journal of Spectroscopy Laboratory, 29(5):2794-2798. ] | |
[5] |
Fitzgerald G, Rodriguez D and O'Leary G . 2010. Measuring and Predicting Canopy Nitrogen Nutrition in Wheat Using a Spectral Index—the Canopy Chlorophyll Content Index (CCCI). Field Crops Research, 116(3):318-324.
doi: 10.1016/j.fcr.2010.01.010 |
[6] | 黄双萍, 岳学军, 洪添胜 . 2013. 基于高光谱的柑橘叶片磷含量估算模型实验. 农业工程学报, 44(4):202-207. |
[ Huang Shuangping, Yue Xuejun and Hong Tiansheng . 2013. Hyperspectral Estimation Model of Total Phosphorus Content of Citrus Leaves. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAR), 44(4):202-207. ] | |
[7] | 何勇, 彭继宇, 刘飞, 孔汶汶 . 2015. 基于光谱和成像技术的作物养分生理信息快速检测研究进展. 农业工程学报, 31(3):174-189. |
[ He Yong, Peng Jiyu, Liu Fei and Kong Wenwen . 2015. Critical Review of Fast Detection of Crop Nutrient and Physiological Information with Spectral and Imaging Technology. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 31(3):174-189. ] | |
[8] | 胡嘉蕊, 吕震宙 . 2017. 基于核主成分分析的多输出模型确认方法. 北京航空航天大学学报, 43(7):1470-1480. |
[ Hu Jiarui and Wang Zhenyu . 2017. Model Validation Method with Multivariate Output Based on Kernel Principal Component Analysis. Journal of Beijing University of Aeronautics and A, 43(7):1470-1480. ] | |
[9] | 胡珍珠, 潘存德, 王世伟, 郭志超, 王清涛, 丁凡 . 2013. 轮台白杏叶片氮磷钾含量光谱估算模型. 新疆农业科学, 50(2):238-248. |
[ Hu Zhenzhu, Pan Cunde, Wang Shiwei., Guo Zhichao, Wang Qingtao and Ding Fan . 2013. Models for Estimating Foliar NPK Content of Armeniaca Vulgaris "Luntaibaixing" Using Spectral Reflectance. Xinjiang Agricultural Sciences, 50(2):238-248. ] | |
[10] |
Iznaga Ahmed Chacón, Orozco Miguel Rodríguez, Alcantara Edith Aguila, Pairol Meilyn Carral, Sicilia Yanet Eddith Díaz, Baerdemaeker Josse de and Saeys Wouter . 2014. VIS/NIR Spectroscopic Measurement of Selected Soil Fertility Parameters of Cuban Agricultural Cambisols. Biosystems Engineering, 125:105-121.
doi: 10.1016/j.biosystemseng.2014.06.018 |
[11] | 简曙光, 吴梅, 刘念 . 2015. 葫芦苏铁遗传多样性的等位酶分析. 广西植物, 25(6):566-569. |
[ Jian Shuguang, Wu Mei and Liu Nian . 2015. Genetic Diversity of Cycas Changjianensis Detected by Allozyme Analysis. Guihaia, 25(6):566-569. ] | |
[12] | 蒋焕煜, 彭永石, 谢丽娟, 应以斌 . 2008. 扫描次数对番茄叶漫反射光谱和模型精度的影响研究. 光谱学与光谱分析, 28(8):1763-1766. |
[ Jiang Huanyu, Peng Yongshi, Xie Lijuan and Ying Yibin . 2008. Study on The Influence of Scan Number on Near Infrared Diffuse Spectra of Tomato Leaf and Model Precision. Spectroscopy and Spectral Analysis, 28(8):1763-1766. ] | |
[13] | 蒋金豹, 陈云浩, 黄文江, 李京 . 2008. 条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型. 农业工程学报, 24(1):35-39. |
[ Jiang Jinbao, Chen Yunhao, Huang Wenjiang and Li Jing . 2008. Hyperspectral Estimation Models for LTN Content of Winter Wheat Canopy Under Stripe Rust Stress. TTransactions of the Chinese Society of Agricultural Engineering, 24(1):35-39. ] | |
[14] |
Li B, Liew O W and Asundi A K . 2006. Pre-Visual Detection of Iron and Phosphorus Deficiency by Transformed Reflectance Spectra. Journal of Photochemistry & Photobiology B Biology, 85(2):131.
doi: 10.1016/j.jphotobiol.2006.06.005 pmid: 16890448 |
[15] | 刘红玉, 毛罕平, 朱文静, 张晓东, 高洪燕 . 2015. 基于高光谱的番茄氮磷钾营养水平快速诊断. 农业工程学报, 31(S1):212-220. |
[ Liu Hongyu, Mao Hanping, Zhu Wenjing, Zhang Xiaodong and Gao Hongyan . 2015. Rapid Diagnosis of Tomato N-P-K Nutrition Level Based on Hyperspectral Technology. Transactions of the Chinese Society of Agricultural Engineering, 31(S1):212-220. ] | |
[16] | Morellos A, Pantazi X E, Moshou D, Alexandridis Thomas, Whetton Rebecca, Tziotzios Georgios, Wiebensohn Jens, Bill Ralf and Mouazen Abdul M . 2016. Machine Learning Based Prediction of Soil Total Nitrogen, Organic Carbon and Moisture Content by Using VIS-NIR Spectroscopy. Biosystems Engineering, S1537511015304165. |
[17] | 孙俊, 丛孙丽, 毛罕平, 武小红, 张晓东, 汪沛 . 2017. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型. 农业工程学报, 33(5):178-184. |
[ Sun Jun, Cong Sunli, Mao Hanping, Wu Xiaohong, Zhang Xiaodong and Wang Pei . 2017. CARS-ABC-SVR Model for Predicting Leaf Moisture of Leaf Used Lettuce Based on Hyperspectral. Transactions of the Chinese Society of Agricultural Engineering, 33(5):178-184. ] | |
[18] | Stenberg B, Rossel R A V, Mouazen A M and Wetterlind J . 2010. Chapter Five-Visible and Near Infrared Spectroscopy in Soil Science. Advances in Agronomy, 107:163-215. |
[19] | 孙墨寒 . 2013. 高光谱数据误差估计及降维方法研究. 北京: 中国地质大学(北京). |
[ Sun Mohan . 2013. The Hyperspectral Image Noise Assessment and Data Dimensionality Reduction Method. Beijing: China University of Geosciences (Beijing). ] | |
[20] | 邢东兴, 常庆瑞 . 2009. 基于光谱分析的果蔬叶片全氮、全磷、全钾含量估测研究——以红富士苹果树为例. 西北农林科技大学学报(自然科学版), 37(2):141-147. |
[ Xing Dongxing and Chang Qingrui . 2009. Research on Predicting the TN, TP, TK Contents of Fresh Fruit Tree Leaves by Spectral Analysis with Red Fuji Apple Tree as an Example. Journal of Northwest A & F University (Natural Science Edition) , 37(2):141-147. ] | |
[21] | 王伯荪, 李鸣光 . 1986. 重要值-面积曲线在热带亚热带森林中的应用. 植物生态学报, 10(3):161-170. |
[ Wang Bosun and Li Mingguang . 1986. Application of Importance Value Area Curve to Tropical and Subtropical Forest. Acta Photogeological et Geobotanica Sinica, 10(3):161-170. ] | |
[22] | Wright D, Philiprasmussetal V, Douglasramsey R, Doran J Baker and Jason W Ellsworth . 2004. Canopy Reflectance Estimation of Wheat Nitrogen Content for Grain Protein Management. Mapping Sciences & Remote Sensing, 41(4):287-300. |
[23] | 王磊, 白由路 . 2006. 基于光谱理论的作物营养诊断研究进展. 植物营养与肥料学报, 12(6):902-912. |
[ Wang Lei and Bai Youlu . 2006. Research Advance on Plant Nutrition Diagnosis Based on Spectral Theory. Plant Nutrition and Fertilizer Science, 12(6):902-912. ] | |
[24] | 王绍华, 曹卫星, 王强盛, 丁艳峰, 黄丕生, 凌启鸿 . 2002. 水稻叶色分布特点与氮素营养诊断. 中国农业科学, 35(12):1461-1466. |
[ Wang Shaohua, Cao Weixing, Wang Qiangsheng, Ding Yanfeng, Huang Pisheng and Ling Qihong . 2002. Positional Distribution of Leaf Color and Diagnosis of Nitrogen Nutrition in Rice Plant. Scientia Agricultura Sinica, 35(12):1461-1466. ] | |
[25] | 徐广通, 袁洪福, 陆婉珍 . 2000. 现代近红外光谱技术及应用进展. 光谱学与光谱分析, 20(2):134-142. |
[ Xu Guangtong, Yuan Hongfu and Lu Wanzhen . 2000. Development of Modern Near Infrared Spectroscopic Techniques and Its Applications. Spectroscopy and Spectral Analysis, 20(2):134-142. ] | |
[26] | Xu S, Zhao Y, Wang M and Shi X . 2018. Comparison of Multivariate Methods for Estimating Selected Soil Properties from Intact Soil Cores of Paddy Fields by VIS-NIR Spectroscopy. Geoderma, 310:29-43. |
[27] | 张瑶, 郑立华, 李民赞, 邓小蕾, 王诗丛, 张锋, 冀荣华 . 2013. 基于光谱特征分析的苹果树叶片营养素预测模型构建. 农业工程学报, 29(8):171-178. |
[ Zhang Yao, Deng Lihua, Li Minzan, Deng Xiaolei, Wang Sicong, Zhang Feng and Ji Ronghua . 2013. Construction of Apple Tree Leaves Nutrients Prediction Model Based on Spectral Analysis. Transactions of the Chinese Society of Agricultural Engineering, 29(8):171-178. ] | |
[28] | 张春燕, 汤进, 赵海峰, 罗斌 . 2007. 基于MDS的统计形状聚类. 计算机技术与发展, 17(3):58-61. |
[ Zhang Chunyan, Tang Jin, Zhao Haifeng and Luo Bin . 2007. Statistical Shape Classification Cased on MDS. Computer Technology and Development, 17(3):58-61. ] | |
[29] | 赵荣珍, 王雪冬, 邓林峰 . 2015. 基于PCA-KLFDA的小样本故障数据集降维方法. 华中科技大学学报(自然科学版), 43(12):12-16. |
[ Zhao Rongzhen, Wang Xuedong and Deng Linfeng . 2015. Small Sample Size Fault Data Recognition Based on the Principal Component Analysis and Kernel Local Fisher Discriminant Analysis. Journal of Huangzhong University of Science and Technology (Natural Science Edition), 43(12):12-16. ] | |
[30] | 王渊, 黄敬峰, 王福民, 刘占宇 . 2008. 油菜叶片和冠层水平氮素含量的高光谱反射率估算模型. 光谱学与光谱分析, 28(2):273-277. |
[ Wang Yuan, Huang Jingfeng, Wang Fumin and Liu Zhanyu . 2008. Predicting Nitrogen Concentrations from Hyperspectral Reflectance at Leaf and Canopy for Rape. Spectroscopy and Spectral Analysis, 28(2):273-277. ] |
[1] | 张晨, 周霞, 李勇, 杨骥, 李林. 半封闭大棚实验下广州市植被滞尘光谱特征分析[J]. 热带地理, 2020, 40(2): 266-277. |
[2] | 周慧,苏有勇,王重洋,陈金月,赵晶,姜浩,陈水森,李丹. 利用无人机的多光谱参数预测荔枝叶片养分质量分数[J]. 热带地理, 2019, 39(4): 562-570. |
[3] | 林培松, 高全洲. 韩江流域典型区几种森林土壤有机碳储量和养分库分析[J]. 热带地理, 2009, 29(4): 329-334. |
[4] | 周厚诚, 任海, 向言词, 彭少麟, 李萍. 南澳岛植被恢复过程中不同阶段土壤的变化[J]. 热带地理, 2001, 21(2): 104-107,112. |
|