热带地理 ›› 2019, Vol. 39 ›› Issue (4): 531-537.doi: 10.13284/j.cnki.rddl.003152
• 专刊:无人机在生态学和地理学中的应用 • 上一篇 下一篇
吴 隐1, 2,韩 东1,姚雪玲1,张 静2,王 锋1
出版日期:
2019-07-10
发布日期:
2019-07-10
通讯作者:
王锋(1981—),男,安徽合肥人,博士,研究员,主要研究方向生态遥感和模型,(E-mail)wangfeng@caf.ac.cn。
作者简介:
吴隐(1994—),男,湖南娄底人,硕士研究生,主要研究方向生态遥感,(E-mail)wuyin.0719@gmail.com;
基金资助:
十三五重点研发计划(2016YFC0500801、2017YFC0503804);国家自然科学基金(31570710)
Wu Yin 1,2, Han Dong 1, Yao Xueling1, Zhang Jing 2 and Wang Feng1
Online:
2019-07-10
Published:
2019-07-10
摘要:
依托位于内蒙古自治区正蓝旗浑善达克沙地榆树疏林草原长期生态定位观测大样地(42°57′53″ N、115°57′30″ E),利用无人机获取的高精度数字高程模型数据和样地内3 768棵榆树空间位置和胸径、树高和冠幅的地面调查数据。综合坡度、坡向、坡向变率和小尺度的海拔高差,基于决策树分类的方法对样地地形进行分类,分析榆树疏林在不同地形上的数量、密度和榆树结构的空间特征。主要结果为:1)样地地形分为沙平地、沙甸、阳坡、阴坡和沙脊5种类型,各类型面积分别占样地总面积的52.89%、17.25%、12.47%、10.05%和7.35%。2)在沙平地、沙甸、阳坡、阴坡和沙脊5种地形下的榆树密度分别为28.9、17.0、41.2、141.7和65.2棵/hm2。3)位于沙地阳坡的榆树胸径、冠幅和树高最大,分别为18.9±7.52cm、5.19±2.33m和4.89±2.33 m。4)榆树在沙丘阴坡的分布密度最高,阳坡的榆树胸径、冠幅和树高显著大于其他地形部位。研究结果表明:基于综合地形因子的沙地微地形分类可更好地表征榆树疏林的空间分布规律,同时也证明了无人机可成为分析植物空间分布格局的有效工具。
吴隐,韩东,姚雪玲,张静,王锋. 基于无人机高分辨率航空影像的榆树疏林空间分布格局及其地形效应[J]. 热带地理, 2019, 39(4): 531-537.
Wu Yin, Han Dong, Yao Xueling, Zhang Jing and Wang Feng. Spatial Pattern and Landforms Effects of Elm (Ulmus pumila) Sparse Forest Based on High Spatial-Resolution Aerial Images from Unmanned Aerial Vehicle (UAV)[J]. TROPICAL GEOGRAPHY, 2019, 39(4): 531-537.
Anderson K and Gaston K J. 2013. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Frontiers in Ecology and the Environment, 11(3): 138-146.Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S and Bareth G. 2014. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sensing, 6(11): 10395-10412. Bjorkman A D, Myers-Smith I H, Elmendorf S C and Weiher E. 2018. Plant Functional Trait Change Across a Warming Tundra Biome. Nature, 562: 57-62. DOI: 10.1038/s41586-018-0563-7. Buettel J C, Cole A, Dickey J M and Brook B W. 2018. Analyzing Linear Spatial Features in Ecology. Ecology, 99: 1490-1497. DOI: 10.1002/ecy.2215. Burrough P A and McDonell R A. 1998. Principles of Geographical Information Systems. New York: Oxford University Press, 190.Carlson B Z A R. 2013. Working Toward Integrated Models of Alpine Plant Distribution. Alpine Botany, 123(2): 41-53. Caylor K K, D'Odorico P and Rodriguez-Iturbe I. 2006. On the Ecohydrology of Structurally Heterogeneous Semiarid Landscapes. Water Resources Research, 42(7): W07424. DOI: 10.1029/2005WR004683. Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, T?mmervik H, Bala G, Zhu Z, Nemani R R and Myneni R B. 2019. China and India Lead in Greening of the World Through Land-use Management. Nature Sustainability, 2: 122-129. DOI: 10.1038/s41893-019-0220-7. Cook K L. 2017. An Evaluation of the Effectiveness of Low-cost UAVs and Structure from Motion for Geomorphic Change Detection. Geomorphology, 278: 195–208. DOI: 10.1016/j.geomorph.2016.11.009. Cunliffe A M, Brazier R E and Anderson K. 2016. Ultra-fine Grain Landscape-scale Quantification of Dryland Vegetation Structure with Drone-acquired Structure-from-Motion Photogrammetry. Remote Sensing of Environment, 183: 129-143. DOI: 10.1016/j.rse.2016.05.019. 褚洪亮,肖青,柏军华,程娟.2017.基于无人机遥感的叶面积指数反演.遥感技术与应用,32(1):140-148.[Chu Hongling, Xiao Qing, Bo Junhua and Cheng Juan. 2017. The Retrieval of Leaf Area Index Based on Remote Sensing by Unmanned Aerial Vehicle. Remote Sensing Technology and Application, 32(1): 140-148. ] Hassan M A, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y and He Z. 2019. Accuracy Assessment of Plant Height Using an Unmanned Aerial Vehicle for Quantitative Genomic Analysis in Bread Wheat. Plant Methods, 15: 37. DOI: 10.1186/s13007-019-0419-7. 韩东,王浩舟,郑邦友,王锋.2018.基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计.生态学报,38(18):6655–6663.[Han Dong, Wang Haozhou, Zheng Bangyou and Wang Feng. 2018. Vegetation Type Classification and Fractional Vegetation Coverage Estimation for an Open Elm (Ulmus pumila) Woodland Ecosystem During a Growing Season Based on an Unmanned Aerial Vehicle Platform Coupled with Decision Tree Algorithms. Acta Ecologica Sinica, 38(18): 6655-6663. ] Liu L, Wang H and Lin C. 2013. Vegetation and Community Changes of Elm (Ulmus pumila) Woodlands in Northeastern China in 1983-2011. Chinese Geographical Science, 23(3): 321-330. 李钢铁,姚云峰,邹受益,刘立成,魏永新,姜鹏.2004.科尔沁沙地榆树疏林草原植被研究.干旱区资源与环境,(6):132-138.[Li Gangtie, Yao Yunfeng, Zou Shouyi, Liu Licheng, Wei Yongxin and Jiang Peng. 2004. Studies on Regenerationt of Grassland with Sparsed Elm in Keerqin Sandy Land. Journal of Arid Land Resources and Environment, (6): 132-138. ] 李钢铁,王永胜,余新晓,李清雪,岳永杰.2011.浑善达克沙地不同密度榆树种群空间格局.干旱区资源与环境,25(3):141-145.[Li Gangtie, Wang Yongsheng, Yu Xinxiao, Li Qingxue and Yue Yongjie. 2011. Spatial Patterns of Elm Density in Otingdag Sandy Land. Journal of Arid Land Resources and Environment, 25(3): 141-145. ] 李哈滨,王政权,王庆成.1998.空间异质性定量研究理论与方法.应用生态学报,(6):93-99.[Li Habin, Wang Zhengquan and Wang Qingcheng. 1998. Theory and Methodology of Spatial Heterogeneity Quantification. Chinese Journal of Applied Ecology, (6): 93-99. ] Mathews A and Jensen J. 2013. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sensing, 5(5): 2164-2183. Mu Y, Wang F, Zheng B, Guo W and Feng Y M. 2018. McGET: A Rapid Image-based Method to Determine the Morphological Characteristics of Gravels on the Gobi Desert Surface. Geomorphology, 304: 89–98. DOI: 10.1016/j.geomorph.2017.12.027. 沈泽昊,张新时,金义兴.2000.地形对亚热带山地景观尺度植被格局影响的梯度分析.植物生态学报,(4):430-435.[Shen Zehao, Zhang Xinshi and Jin Yixing. 2000. Gradient Analysis of the Influence of Mountain Topography on Vegetation Pattern. Chinese Journal of Plant Ecology, (4): 430-435. ] Wulder M A, Dymond C C, White J C, Leckie D G and Carroll A L. 2006. Surveying Mountain Pine Beetle Damage of Forests: A Review of Remote Sensing Opportunities. Forest Ecology and Management, 221(1/3): 27-41. Yu N, Li L, Schmitz N, Tian L F, Greenberg J A and Diers B W. 2016. Development of Methods to Improve Soybean Yield Estimation and Predict Plant Maturity with an Unmanned Aerial Vehicle Based Platform. Remote Sensing of Environment, 187: 91–101. DOI: 10.1016/j.rse.2016.10.005. 于顺利.2011.中国温带疏林的地理分布、生态地位及成因.科技导报,29(25):26-29.[Yu Shunli. 2011. Geographical Distribution, Ecological position, and Formation Causes of Temperate Zone Sparse Forest in China. Science & Technology Review, 29(25): 26-29. ] 张金屯.1998.植物种群空间分布的点格局分析.植物生态学报,(4):57-62.[Zhang Jintun. 1998. Analysis of Spatial Point Pattern for Plant Species. Chinese Journal of Plant Ecology, (4): 57-62. ] |
[1] | 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491. |
[2] | 刘凯, 龚辉, 曹晶晶, 朱远辉. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501. |
[3] | 朱孟,周忠发,赵馨,黄登红,蒋翼,吴跃,崔亮. 基于无人机遥感的喀斯特高原峡谷区火龙果单株识别提取方法[J]. 热带地理, 2019, 39(4): 502-511. |
[4] | 张顺, 赵玉金, 白永飞, 杨龙, 孙中宇. 基于低空无人机的草原灌丛遥感辨识方法[J]. 热带地理, 2019, 39(4): 512-520. |
[5] | 陈黎,刘淑冰,李万能. 无人机遥感在河流岸线资源监管中的应用[J]. 热带地理, 2019, 39(4): 521-530. |
[6] | 孙中宇,黄钰辉,杨龙,王重洋,孙红斌,王佐霖,张卫强,甘先华. 基于无人机遥感的古银叶树群落健康快速诊断[J]. 热带地理, 2019, 39(4): 538-545. |
[7] | 李杰,刘强. 无人机水禽监测模式的设立原则探讨[J]. 热带地理, 2019, 39(4): 546-552. |
[8] | 王悦,练琚愉,张昭臣,胡健波,杨骥,李勇,叶万辉. 基于两种无人机航拍影像的林窗和林冠提取分析[J]. 热带地理, 2019, 39(4): 553-561. |
[9] | 周慧,苏有勇,王重洋,陈金月,赵晶,姜浩,陈水森,李丹. 利用无人机的多光谱参数预测荔枝叶片养分质量分数[J]. 热带地理, 2019, 39(4): 562-570. |
[10] | 黄登红,周忠发,吴跃,朱孟,尹林江,崔亮. 基于无人机可见光影像的高原丘陵盆地区山药植株识别[J]. 热带地理, 2019, 39(4): 571-582. |
[11] | 田义超, 黄远林, 陶进, 张强, 吴彬, 张亚丽, 黄鹄, 梁铭忠, 周国清. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算[J]. 热带地理, 2019, 39(4): 583-596. |
[12] | 江学顶,梁钊雄,周红艺,戴远锋,陈业昊. 基于无人机倾斜摄影技术的崩岗动态变化监测[J]. 热带地理, 2019, 39(4): 597-603. |
[13] | 张菁,孙千惠,叶震,杨默含,赵晓霞,巨袁臻,胡天宇,郭庆华. 生态遥感新锐——轻小型无人机的应用[J]. 热带地理, 2019, 39(4): 604-615. |
[14] | 王俊丽,任世奇,张忠华,胡刚,付瑞玉,周元慧,彭杏冰. 基于文献计量评价的无人机生态遥感监测研究进展[J]. 热带地理, 2019, 39(4): 616-624. |
[15] | 梁宇哲,郑荣宝,徐嘉源,郑至键. 基于Citespace的无人机遥感研究知识图谱分析[J]. 热带地理, 2019, 39(2): 309-317. |
|