热带地理 ›› 2016, Vol. 36 ›› Issue (6): 915-922.doi: 10.13284/j.cnki.rddl.002900
许莉佳1,3,余克服1,2,李 淑1
收稿日期:
2016-10-12
出版日期:
2016-11-05
发布日期:
2016-11-05
通讯作者:
余克服(1969―),男,湖北公安人,研究员,博士,主要从事珊瑚礁高分辨率环境记录及其生态响应研究,(E-mail)kefuyu@scsio.ac.cn
作者简介:
许莉佳(1987―),女,河南周口人,博士研究生,主要从事珊瑚礁对环境变化的生态响应研究,(E-mail)jiali1016@126.com
基金资助:
国家重大科学研究计划项目(2013CB956102、2013CB956103);国家自然科学基金项目(41025007)
XU Lijia 1,3 ,YU Kefu 1,2 ,LI Shu 1
Received:
2016-10-12
Online:
2016-11-05
Published:
2016-11-05
摘要:
在全球气候变暖和人类活动加剧导致珊瑚礁严重衰退的背景下,以抗逆性强的澄黄滨珊瑚(Porites lutea)为研究对象,于 2013 年 10 月―2014 年 8 月在海南岛文昌和三亚对其共生藻密度及光合效率开展了季节性调查研究。结果显示:1)澄黄滨珊瑚共生藻的密度及光合效率均存在显著的季节变化,共生藻密度在冬季最低、夏季较高,其光合效率在冬季较高,春夏季较低。2)澄黄滨珊瑚共生藻密度的空间差异远小于其季节变化的差异,但水深 1~2 m 澄黄滨珊瑚共生藻的密度普遍高于水深 4~6 m 的澄黄滨珊瑚,三亚澄黄滨珊瑚共生藻的光合效率明显高于文昌。3)进一步分析发现,在诸多环境因子中,海表温度 SST 和水体营养是驱动海南岛澄黄滨珊瑚共生藻密度及光合效率变化的主要环境因素,而光合效率的空间差异则可能是珊瑚对生存环境长期驯化的结果。由于文昌和三亚沿岸海水养殖和潜水旅游等人类活动频繁,礁区海水面临富营养化的风险,推测海南岛澄黄滨珊瑚面临 SST 上升和营养胁迫联合效应的严重威胁。
许莉佳,余克服,李 淑. 海南岛澄黄滨珊瑚共生藻对环境变化的适应性[J]. 热带地理, 2016, 36(6): 915-922.
XU Lijia,YU Kefu,LI Shu . Seasonal Responses of Symbiodinium in Stress-tolerant Porites lutea to Environmental Factors on Fringing Reefs of the Hainan Island[J]. TROPICAL GEOGRAPHY, 2016, 36(6): 915-922.
[1] YU K F.Coral reefs in the South China Sea:their responses to and records on past environmental changes[J].Sci. China Earth Sci,2012,55(8):1217-1229.[2] DE'ATH G,FABRICIUS K E,SWEATMAN H,PUOTINEN M.The 27-year decline of coral cover on the Great Barrier Reef and its causes[J].Proc. Natl. Acad. Sci. USA,2012,109:17995-17999.[3] BELLWOOD D R,HOEY A S,ACKERMAN J L,DEPCZYNSKI M.Coral bleaching,reef fish community phase shifts and the resilience of coral reefs[J].Global Change Biol.,2006,12:1587-1594.[4] HOEGH-GULDBERG O,MUMBY P J,HOOTEN A J,STENECK R S,GREENFIELD P,GOMEZ E,HARVELL C D,SALE P F,EDWARDS A J,CALDEIRA K,KNOWLTON N,EAKIN C M,IGLESIAS-PRIETO R,MUTHIGA N,BRADBURY R H,DUBI A,HATZIOLOS M E.Coral reefs under rapid climate change and ocean acidification[J].Science,2007,318:1737-1742.[5] FITT W K,BROWN B E,WARNER M E,DUNNE R P.Coral bleaching:interpretation of thermal tolerance limits and thermal thresholds in tropical corals[J].Coral Reefs,2001,20:51-65.[6] JONES R J,WARD S,YANG A A,HOEGH-GULDBERG O.Changes in quantum efficiency of photosystem II of symbiotic dinoflagel-lates of corals after heat stress,and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event[J].Mar. Freshwater Res.,2000,50:839-866.[7] MARSHALL P A,BAIRD A H.Bleaching of corals on the Great Barrier Reef:differential susceptibilities among taxa[J].Coral Reefs,2000,19:155-163.[8] 李淑,余克服,施祺,陈天然,赵美霞,严宏强.海南岛鹿回头石珊瑚对高温响应行为的实验研究[J].热带地理,2008,28(6):534-539.[9] WOOLDRIDGE S A.Differential thermal bleaching susceptibilities amongst coral taxa:re-posing the role of the host[J].Coral Reefs,2014,33:15-27.[10] FAGOONEE I,WILSON H B,HASSELL M P,TURNER J R.The dynamics of zooxanthellae populations:A long-term study in the field [J].Science,1999,283:843-845.[11] HINRICHS S,PATTEN N L,WAITE A M.Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera - Implications for Monitoring Projects[J].PLoS One,2013,8:e63693.[12] SAWALL Y,AL-SOFYANI A,BANGUERA-HINESTROZA E,VOOLSTRA C R.Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea[J].PLoS One,2014,9:e103179.[13] BROWNE N K,TAY J K L,LOW J,LARSON O,TODD P A.Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality[J].Mar. Environ. Res.,2015,105:39-52.[14] YAN H Q,YU K F,SHI Q,TAN Y H,LIU G H,ZHAO M X,LI S,CHEN T R,WANG Y H.Seasonal variations of seawater pCO2 and sea- air CO2 fluxes in a fringing coral reef,northern South China Sea[J].J. Geophys. Res. Oceans,2016,121:998-1008.[15] ZHAO M X,YU K F,ZHANG Q M,SHI Q,PRICE G J.Long-term Decline of a Fringing Coral Reef in the Northern South China Sea[J].J. Coast Res.,2012,28:1088-1099.[16] ZHAO M X,YU K F,ZHANG Q M,SHI Q,ROFF G.Age structure of massive Porites lutea corals at Luhuitou fringing reef(northern South China Sea)indicates recovery following severe anthropogenic disturbance[J].Coral Reefs,2014,33:39-44.[17] 张乔民,施祺,陈刚,方静威,黄志俊,黄晖,王汉奎,赵美霞.海南三亚鹿回头珊瑚礁监测与管理策略[J].科学通报,2006,51(增刊II):71-77. [18] YU K F,ZHAO J X,LAWRENCE M G,FENG Y X.Timing and duration of growth hiatuses in mid Holocene massive Porites corals from the northern South China Sea[J].J. Quat. Sci.,2010,25:1284-1292.[19] 蔡泽富,陈石泉,吴钟解,童玉和,黄洁英,张光星,李向民.海南岛东北部沿岸造礁石珊瑚时空分布特征[J].海洋湖沼通报,2015,3:78-86. [20] PINIAK G A,BROWN E K.Temporal Variability in Chlorophyll Fluorescence of Back-Reef Corals in Ofu,American Samoa[J].Biol. Bull.,2009,216:55-67.[21] SHEARER T L,RASHER D B,SNELL T W,HAY M E.Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae[J].Coral Reefs,2012,31:1177-1192.[22] HILL R,TAKAHASHI S.Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions[J].Coral Reefs,2014,33:1101-1111.[23] KEMP D W,HERNANDEZ-PECH X,IGLESIAS-PRIETO R,FITT W K,SCHMIDT G W.Community dynamics and physiology of Symbiodinium spp.before,during,and after a coral bleaching event [J].Limnol. Oceanogr.,2014,59:788-797.[24] LI S,YU K,SHI Q,CHEN T,ZHAO M,ZHAO J.Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching [J].Chin. Sci. Bull.,2008,53:295–303.[25] 周洁,施祺,余克服.三亚造礁石珊瑚虫黄藻光合作用效率的日周期及其调控因素[J].热带海洋学报,2014,33(1):81-89. [26] STIMSON J.The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis(Linnaeus)[J].J. Exp. Mar. Biol. Ecol.,1997,214:35-48.[27] BROWN B E,DUNNE R P,AMBARSARI I,LE TISSIER M D A,SATAPOOMIN U.Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo- Pacific coral species[J].Mar. Ecol. Prog. Ser.,1999,191:53-69.[28] ULSTRUP K E,HILL R,VAN OPPEN M J H,LARKUM A W D,RALPH P J.Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals [J].Mar. Ecol. Prog. Ser.,2008,361:139-150.[29] RODOLFO-METALPA R,REYNAUD S,ALLEMAND D,FERRIER-PAGES C.Temporal and depth responses of two temperate corals,Cladocora caespitosa and Oculina patagonica,from the North Mediterranean Sea[J].Mar. Ecol. Prog. Ser.,2008,369:103-114.[30] XING S,TAN Y H,ZHOU L B,LIAN X P,HUANG L M.Effects of water turbidity on the symbiotic zooxanthella of hermatypic corals [J].Chin. Sci. Bull(Chin. Ver.),2012,57:348-354.[31] HINRICHS S,PATTEN N L,WAITE A M.Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera-Implications for Monitoring Projects[J].PLoS ONE,2013,8:e63693.[32] JING Z Y,QI Y Q,HUA Z L,ZHANG H.Numerical study on the summer upwelling system in the northern Continental shelf of the South China Sea[J].Cont. Shelf Res.,2009,29:467-478.[33] DUNN J G,SAMMARCO P W,LAFLEUR G J R.Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach[J].J. Exp. Mar. Biol. Ecol.,2012,411:34-44.[34] ANTHONY K R N,HOOGENBOOM M O,MAYNARD J A,GROTTOLI A G,MIDDLEBROOK R.Energetics approach to predicting mortality risk from environmental stress:a case study of coral bleaching[J].Funct. Ecol.,2009,23:539-550.[35] FABRICIUS K,DE'ATH G,MCCOOK L,TURAK E,WILLIAMS D M.Changes in algal,coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef[J].Mar. Pollut.Bull.,2005,51:384-398.[36] WIEDENMANN J,D'ANGELO C,SMITH E G,HUNT A N,LEGIRET F E,POSTLE A D,ACHTERBERG E P.Nutrient enrichment can increase the susceptibility of reef corals to bleaching[J].Nat. Clim. Chang,2013,3:160-164.[37] WOOLDRIDGE S A.Water quality and coral bleaching thresholds:Formalising the linkage for the inshore reefs of the Great Barrier Reef,Australia[J].Mar. Pollut. Bull.,2009,58:745-751. |
[1] | 张丽, 廖静娟, 袁鑫, 穆晓东, 宋茜茜, 毕京鹏. 1987—2017年海南岛海岸线变化特征遥感分析[J]. 热带地理, 2020, 40(4): 659-674. |
[2] | 赵志忠,李 燕,赵泽阳,邢瑶丽,刘玉燕. 海南岛东部地区土地利用方式对土壤有机碳与 易氧化有机碳的影响 [J]. 热带地理, 2019, 39(1): 144-152. |
[3] | 邱彭华,王德智,谢跟踪,徐颂军,曹瑞,王军广. 海南岛人工与天然红树林重金属污染、 富集与转运能力比较[J]. 热带地理, 2018, 38(6): 836-847. |
[4] | 李茂芬,李玉萍,罗微,李海亮. 海南岛逐日太阳总辐射长期演变特征与关联因子[J]. 热带地理, 2016, 36(4): 666-672. |
[5] | 王梦媛,郑卓,黄康有,张怡萌.. 海南岛南部MIS-5海相沉积地层的发现及其意义[J]. 热带地理, 2016, 36(3): 399-405. |
[6] | 田成静, 欧阳婷萍, 朱照宇, 邱 燕, 彭学超, 李明坤. 海南岛周边海域表层沉积物磁化率 空间分布特征及其物源指示意义 [J]. 热带地理, 2013, 33(6): 666-673. |
[7] | 童晓宁,周厚云,黄 颖,贺海波,朱礼妍. 广东英德宝晶宫CO2浓度的时空变化特征[J]. 热带地理, 2013, 33(4): 439-443. |
[8] | 吴志祥, 杜莲英, 兰国玉, 谢贵水, 杨川, 周兆德. 海南岛橡胶林辐射通量特征[J]. 热带地理, 2012, 32(6): 575-581. |
[9] | 邱彭华, 徐颂军, 符英, 谢跟踪. 海南岛海岸带土地利用现状及问题分析[J]. 热带地理, 2012, 32(6): 582-592. |
[10] | 徐尚全,殷建军,王晓晓,杨平恒,毛海红,沈立成. 岩溶作用季节性变化对洞穴沉积物沉积速率的影响研究——以重庆雪玉洞地下河系统为例[J]. 热带地理, 2012, 32(5): 481-486. |
[11] | 董国涛, 杨胜天, 白娟, 高云飞, 郑东海, 朗杨. 海南岛中部山区热带天然林与人工橡胶林土壤特性对比研究[J]. 热带地理, 2012, 32(1): 11-15. |
[12] | 张固成, 傅杨荣, 何玉生, 杨奕, 郭跃品, 张家友, 马荣林, 李随云. 海南岛土壤有机碳空间分布特征及储量[J]. 热带地理, 2011, 31(6): 554-558. |
[13] | 王翱宇, 蒲俊兵, 沈立成, 何阳. 重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J]. 热带地理, 2010, 30(3): 272-277. |
[14] | 王丽荣, 李贞, 蒲杨婕, 廖文波, 张乔民, 余克服. 近50年海南岛红树林群落的变化及其与环境关系分析——以东寨港、三亚河和青梅港红树林自然保护区为例[J]. 热带地理, 2010, 30(2): 114-120. |
[15] | 申涛, 田良. 海南岛旅游吸引物空间结构及其演化——基于41家高等级旅游景区(点)的分析[J]. 热带地理, 2010, 30(1): 96-100. |
|