热带地理 ›› 2019, Vol. 39 ›› Issue (3): 319-328.doi: 10.13284/j.cnki.rddl.003128
• 论文 • 下一篇
覃业曼a,b,c,d,余克服a,b,c,王 瑞a,b,c,姜 伟a,b,c,许慎栋a,b,c
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
余克服(1969—),男,湖北公安人,教授,博士,主要从事南海珊瑚礁地质、生态与环境研究,(E-mail)kefuyu@scsio.ac.cn。
作者简介:
覃业曼(1993—),女,土家族,湖北宜昌人,硕士研究生,研究方向为海洋与湿地生态,(E-mail)qinyemanman@163.com;
基金资助:
国家自然科学基金重点项目(91428203);广西科技项目(AD17129063、AA17204074)
Qin Yemana,b,c,d, Yu Kefua,b,c, Wang Ruia,b,c, Jiang Weia,b,c and Xu Shendonga,b,c
Online:
2019-05-05
Published:
2019-05-05
摘要:
以西沙群岛琛航岛珊瑚礁钻孔为材料,通过高精度铀系测年技术测定了全新世底界的年代;同时利用MAT-253同位素质谱仪和电感耦合等离子体质谱仪测定了0~20 m层段δ13C、δ18O和锶元素的质量分数,以U-Th年龄为基础,结合δ13C、δ18O和锶元素的质量分数均在16~17 m之间明显降低这一特点,得到琛航岛全新世珊瑚礁的起始发育时间为距今7 900 a前,不整合于晚更新世的珊瑚礁体(年代老于110 ka)之上,全新世礁体的厚度为16.7 m。考虑研究区域新构造活动相对稳定,以及南海现代珊瑚礁的礁坪面与大潮低潮面基本一致,琛科2井的钻孔井位高于现代礁坪约2.9 m,推测其起始发育时的位置在现代海平面大潮低潮面之下约13.8 m,即西沙群岛海域7 900 a前的海平面在现代海平面以下约13.8 m,近7 900 a以来海平面上升了至少13.8 m。这一结果为理解全新世南海珊瑚礁的发育历史及海平面变化提供了新的信息。
覃业曼,余克服,王瑞,姜伟,许慎栋. 西沙群岛琛航岛全新世珊瑚礁的起始发育时间及其海平面指示意义[J]. 热带地理, 2019, 39(3): 319-328.
Qin Yeman, Yu Kefu, Wang Rui, Jiang Wei and Xu Shendong. The Initiation Time of the Holocene Coral Reef at the Chenhang Island (Xisha Islands) and Its Significance as a Sea Level Indicator[J]. TROPICAL GEOGRAPHY, 2019, 39(3): 319-328.
Argus D F, Peltier W R, Drummond R and Moore A W. 2014. The Antarctica Component of Postglacial Rebound Model ICE-6G_C (VM5a) Based on GPS Positioning, Exposure Age Dating of Ice Thicknesses, and Relative Sea Level Histories. Geophysical Journal International, 198(1): 537-563. Buonocunto F P, Sprovieri M, Bellanca A, D’Argenio B, Ferreri V and Neri R. 2002. Cyclostratigraphy and High-frequency Carbon Isotope Fluctuations in Upper Cretaceous Shallow-water Carbonates, Southern Italy. Sedimentology, 49(6): 17. Cabioch G, Montaggioni L F and Faure G. 1995. Holocene Initiation and Development of New Caledonian Fringing Reefs, SW Pacific. Coral Reefs, 14(3): 131-40. Camoin G F, Colonna M, Montaggioni L F, Casanova J, Faure G and Thomassin B A. 1997. Holocene Sea Level Changes and Reef Development in the Southwestern Indian Ocean. Coral Reefs, 16(4): 247-259. Chappell J and Shackleton N J. 1986. Oxygen Isotopes and Sea Level. Nature, 324 (6093): 137-140. Cheng H, Edwards R L, Hoff J, Gallup C D, Richards D A and Asmerom Y. 2000. The Halflives of Uranium-234 and Thorium-230. Chemical Geology, 169 (1): 17-33. Clark J A, Farrell W E and Peltier W R. 1978. Global Changes in Post-glacial Sea-level: A Numerical Calculation1. Quaternary Research, 9(3): 265-287. Clark T R, Zhao J X, Roff G, Feng Y X, Done T J, Nothdurft L D and Pandolfi J M. 2014. Discerning the Timing and Cause of Historical Mortality Events in Modern Porites from the Great Barrier Reef. Geochimica et Cosmochimica Acta, 138: 57-80. Derry L A, Kaufman A J and Jacobsen S B. 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. 冯英辞,詹文欢,姚衍桃,孙杰,刘守金,李健. 2015. 西沙群岛礁区的地质构造及其活动性分析. 热带海洋学报,34(3):48-53. [Feng Yingci, Zhan Wenhuan, Yao Yantao, Sun Jie, Liu Shoujin and Li Jian. 2015. Analysis of Tectonic Movement and Activity in the Organic Reef Region around the Xisha Islands. Journal of Tropical Oceanography, 34(3): 48-53. ] 何起祥,张明书,业治铮,韩春瑞,吴建政,李浩,鞠连军. 1986. 西沙群岛石岛晚更新世碳酸盐沉积物的稳定同位素地层学. 海洋地质与第四纪地质,6(3):3-10. [He Qixiang, Zhang Mingshu, Ye Zhizheng, Han Chunrui, Wu Jianzheng, Li Hao and Ju Jianjun. 1986. Carbonate Oxygen Stable Isotope Stratigraphy of Late Pleistocene Carbonate Deposits at Shidao Island, Xisha Islands, China. Marine Geology & Quaternary Geology, 6(3): 3-10. ] Hongo C and Kayanne H. 2009. Holocene Coral Reef Development under Windward and Leeward Locations at Ishigaki Island, Ryukyu Islands, Japan. Sedimentary Geology, 214(1): 62-73. Hongo C and Kayanne H. 2010. Holocene Sea-level Record from Corals: Reliability of Paleodepth Indicators at Ishigaki Island, Ryukyu Islands, Japan. Palaeogeography Palaeoclimatology Palaeoecology, 287(1): 143-151. Hopley D and Barnes R. 1985. Structure and Development of a Windward Fringing Reef, Orpheus Island, Palm Group, Great Barrier Reef. Papeete: Proceeding of 5th International Coral Reef Symposium, 3: 141-146. Hopley D, Smithers S and Parnell K. 2007. The Geomorphology of the Great Barrier Reef: Development, Diversity and Change. Cambridge: Cambridge University Press. Johnson D P and Risk M J. 1987. Fringing Reef Growth on a Terrigenous Mud Foundation, Fantome Island, Central Great Barrier Reef, Australia. Sedimentology, 34: 275-287. Kan H, Hori N, Kawana T, Kaigara T and Ichikawa K. 1997. The Evolution of a Holocene Fringing Reef and Island: Reefal Environmental Sequence and Sea Level Change in Tonaki Island, the Central Ryukyus. Atoll Research Bulletin, 443: 1-20. Kayanne H, Yamano H and Randall R H. 2002. Holocene Sea-level Changes and Barrier Reef Formation on an Oceanic Island, Palau Islands, Western Pacific. Sedimentary Geology, 150(1): 47-60. Lambeck K, Purcell A, Sun Y and Sambridge M. 2014. Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43): 15296-15303. Ludwig K R. 2012. User’s Manual for Isoplot/3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center. MacIntyre I G, Glynn P W and Cortés J. 1992. Holocene Reef History in the Eastern Pacific: Mainland Costa Rica, Ca?o Island, Cocos Island, and Galapagos Islands. Guam: Proceeding of 7th International Coral Reef Symposium, 2: 1174-1184. Mcgregor H V and Gagan M K. 2003. Diagenesis and Geochemistry of Porites, Corals from Papua New Guinea: Implications for Paleoclimate Reconstruction. Geochimica et Cosmochimica Acta, 67(12): 2147- 2156. Milne G A and Mitrovica J X. 2008. Searching for Eustasy in Deglacial Sea-Level Histories. Quaternary Science Reviews, 27 (25): 2292-2302.Mitrovica J X, Gomez N and Clark P U. 2009. The Sea-level Fingerprint of West Antarctic collapse. Science, 323(5915): 753. Montaggioni L F. 1988. Holocene Reef Growth History in Mid-plate High Volcanic Islands. Townsville: Proceeding of 6th International Coral Reef Symposium, 3: 455-460. Montaggioni L F and Braithwaite C J R. 2009. Quaternary Coral Reef Systems: History, Development Processes and Controlling Factors. Developments in Marine Geology, 5: 1-532. 聂宝符,陈特固,梁美桃,钟晋樑,余克服. 1997. 南沙群岛及其邻近礁区造礁珊瑚与环境变化的关系. 北京: 科学出版社. [Nie Baofu, Chen Tegu, Liang Meitao, Zhong Jinliang and Yu Kefu. 1997. The Relationship between Reef Coral and Environmental Changes of Nansha Islands and Adjacent Regions. Beijing: Science Press. ] Nothdurft L D and Webb G E. 2009. Earliest Diagenesis in Scleractinian Coral Skeletons: Implications for Palaeoclimate-sensitive Geochemical Archives. Facies, 55(2): 161-201. Peltier W R. 2004. Global Glacial Isostasy and the Surface of the Ice-Age Earth: the Ice-5G (VM2) Model and GRACE. Annual Review of Earth and Planetary Sciences, 20 (32): 111-149. Prahl H. 1986. Crustaceos Decapodos, Asociados a Diferentes Habitats En La Ensenada De Utria, Choco, Colombia. Actualidades Biologicas, 15: 95-99. Shao L, Li Q Y, Zhu W L, Zhang D J, Qiao P J, Liu X Y, You L, Cui Y C and Dong X X. 2017. Neogene Carbonate Platform Development in the NW South China Sea: Litho-, Bio- and Chemo-stratigraphic Evidence. Marine Geology, 385: 233–243. Shen C C, Siringan F P, Lin K, Dai C F and Gong S Y. 2010. Sea-level Rise and Coral-reef Development of Northwestern Luzon since 9.9ka. Palaeogeography Palaeoclimatology Palaeoecology, 292(4): 465-473. Shen C C, Li K S, Sieh K, Natawidjaja D, Cheng H, Wang X F, Edwards R L, Lam D D, Hsieh Y T, Fan T Y, Meltzner A J, Taylor F W, Quinn T M, Chiang H W and Kilbourne K H. 2008. Variation of Initial 230Th/ 232Th and Limits of High Precision U–Th Dating of Shallow-water Corals. Geochimica Et Cosmochimica Acta, 72(17): 4201-4223. Smithers S and Larcombe P. 2003. Late Holocene Initiation and Growth of a Nearshore Turbid-zone Coral Reef: Paluma Shoals, Central Great Barrier Reef, Australia. Coral Reefs, 22(4): 499-505. Thompson W G, Spiegelman M W, Goldstein S L and Speed R C. 2003. An Open-system Model for U-series Age Determinations of Fossil Corals. Earth and Planetary Science Letters, 210(1/2): 1-381. Toth L T, MacIntyre I G and Aronson R B. 2017. Holocene Reef Development in the Eastern Tropical Pacific. Netherlands: Springer. 王崇友,何希贤,裘松余. 1979. 西沙群岛西永一井碳酸盐岩地层与微体古生物的初步研究. 石油实验地质,(1):25-40,75. [Wang Chongyou, He Xixian and Qiu Songyu. 1979. Preliminary Study on Carbonate Rock Strata and Micropaleontology in Well Xiyong-1, Xisha Islands. Petroleum Geology & Experiment, (1): 25-40, 75. ] 汪汉胜,贾路路,Patrick W U,江利明,胡波,相龙伟. 2012. 末次冰期冰盖消融对东亚历史相对海平面的影响及意义. 地球物理学报,55(4):1144-1153. [Wang Hansheng, Jia Lulu, Patrick W U, Jiang Hanming, Hu Bo and Xiang Longwei. 2012. Effects of Last- deglaciation on the Historical Relative Sea Levels of East Asia Seas and the Implications. Chinese Journal of Geophysics, 55(4): 1144- 1153. ] 王璐,余克服,王英辉,王少鹏,黄学勇,张瑞杰,王丽伟. 2017. 南海中沙群岛、西沙群岛珊瑚岛礁区海水重金属的分布特征. 热带地理,37(5):718-727. [Wang Lu, Yu Kefu, Wang Yinghui, Wang Shaopeng, Huang Xueyong, Zhang Ruijie and Wang Liwei. 2017. Distribution Characteristic of Heavy Metals in Coral Reefs Located in the Zhongsha Islands and Xisha Islands of South China Sea. Tropical Geography, 37(5): 718-727. ] 王瑞,余克服,王英辉,边立曾. 2017. 珊瑚礁的成岩作用. 地球科学进展,32(3):221-233. [Wang Rui, Yu Kefu, Wang Yinghui and Bian Lizeng. 2017. The Diagenesis of Coral Reefs. Advances in Earth Science, 32(3): 221-233. ] 魏喜,贾承造,孟卫工,熊湘华. 2008. 南海西沙海域西琛1井生物礁的性质及岩石学特征. 地质通报,27(11):1933-1938. [Wei Xi, Jia Chengzao, Meng Weigongand Xiong Xianghua. 2008. Biogenetic Reefs and Its Petrological Characteristics of Well Xichen 1, Xisha Sea Area, China. Geological Bulletin of China, 27(11): 1933-1938. ] Woodroffe C D and Webster J M. 2014. Coral Reefs and Sea-level Change. Marine Geology, 352: 248-267. Yamano H, Abe O, Matsumoto E, Kayanne H and Blanchon P. 2003. Influence of Wave Energy on Holocene Coral Reef Development: An Example from Ishigaki Island, Ryukyu Islands, Japan. Sedimentary Geology, 159(1): 27-41. Yu K F, Zhao J X, Wang P X, Shi Q, Meng Q S, Collerson K D and Liu T S. 2006. High-precision TIMS U-series and AMS14 C Dating of a Coral Reef Lagoon Sediment Core from Southern South China Sea. Quaternary Science Reviews, 25(17): 2420-2430. 余克服. 2018. 珊瑚礁科学概论. 北京:科学出版社. [Yu Kefu. 2018. Introduction to the Science of Coral Reefs. Beijing: Science Press. ] 詹文欢,朱照宇,姚衍桃,孙宗勋,孙龙涛. 2006. 南海西北部珊瑚礁记录所反映的新构造运动. 第四纪研究,26(1):77-84. [Zhan Wenhuan, Zhu Zhaoyu, Yao Yantao, Sun Zongxun and Sun Longtao. 2006. Neotectonic Movement Recorded in Coral Reefs in the Northwestern South China Sea. Quaternary Sciences, 26(1): 77-84. ] 张海洋,许红,赵新伟,卢树参,王修齐,张威威. 2016. 西永2井中新世白云岩储层特征及成岩作用. 海洋地质前沿,32(3):41-47. [Zhang Haiyang, Xu Hong, Zhao Xinwei, Lu Shushen, Wang Xiuqi and Zhang Weiwei. 2016. Reservoir Characteristics and Diagenesis of the Miocene Dolomite in Well Xiyong-2. Marine Geology Frontiers, 32(3): 41-47. ] 张会领,余克服,施祺,陶士臣,严宏强,刘国辉. 2017. 利用珊瑚生长率重建西沙海域工业革命以来的海温变化. 热带地理,37(5):701-707. [Zhang Huiling, Yu Kefu, Shi Qi, Tao Shichen, Yan Hongqiang and Liu Guohui. 2017. Sea Surface Temperature Variations since the Industria l Revolution as Reconstructed by Porites Coral Growth Rate in Xisha Waters. Tropical Geography, 37(5): 701-707. ] 赵焕庭. 1998. 南海诸岛珊瑚礁新构造运动的特征. 海洋地质与第四纪地质,(1):37-45. [Zhao Huanting. 1998. Characteristics of Neotectonic Movement of Coral Reef Area of the South China Sea islands. MarineGeology & Quaternary Geology, (1): 37-45. ] 赵焕庭,王丽荣. 2016. 珊瑚礁形成机制研究综述. 热带地理,36(1): 1-9. [Zhao Huanting and Wang Lirong. 2016. Review on the Study of Formation Mechanism of Coral Reefs. Tropical Geology, 36(1): 1-9. ] Zhao M Y and Zheng Y F. 2014. Marine Carbonate Records of Terrigenous Input into Paleotethyan Seawater: Geochemical Constra ints from Carboniferous Limestones. Geochimica et Cosmochimica Acta, 141: 508-531. Zhao Y Y, Zheng Y F and Chen F. 2009. Trace Element and Strontium Isotope Constraints on Sedimentary Environment of Ediacaran Carbonates in Southern Anhui, South China. Chemical Geology, 265(3/4): 1-362. 中国科学院南沙综合科学考察队. 1992. 南沙群岛永署礁第四纪珊瑚礁地质. 北京:海洋出版社. [The Multidisciplinary Oceanographic Expedition Team of Chinese Academy of Sciences to the Nansha Islands. 1992. Quaternary Coral Reef Geology of Yongshu Reef, Nansha Islands. Beijing: Science Press. ] |
[1] | 李嘉欣, 郑卓, 谷俊杰, 马婷, 易西兵, 汤永杰. 广州城区晚全新世环境变迁与人类活动[J]. 热带地理, 2021, 41(1): 67-81. |
[2] | 周胜男, 施祺, 郭华雨, 杨红强, 严宏强. 2009—2017年南沙群岛珊瑚礁砾洲演变[J]. 热带地理, 2020, 40(4): 694-708. |
[3] | 刘小菊, 施祺, 杨红强, 周胜男. 基于侧扫声呐影像的南海珊瑚礁沉船及周边地形重建[J]. 热带地理, 2020, 40(2): 278-288. |
[4] | 张会领,殷建军,林玉石. 中晚全新世湘西莲花洞石笋灰度变化特征 及其古气候意义[J]. 热带地理, 2018, 38(6): 810-818. |
[5] | 万智巍,贾玉连,蒋梅鑫. 华南北热带11.5―2.5 ka B.P. 温度集成重建与特征分析[J]. 热带地理, 2018, 38(5): 641-650. |
[6] | 赵焕庭,王丽荣. 南海诸岛珊瑚礁人工岛建造研究[J]. 热带地理, 2017, 37(5): 681-693. |
[7] | 李扬,余克服,王英辉,郭靖,黄学勇,裴继影,罗燕秋. 三亚鹿回头岸礁海域夏季表层海水营养盐年际变化特征[J]. 热带地理, 2017, 37(5): 708-717. |
[8] | 郑卓,汤永杰,郑艳伟,黄康有,韩子云,宗永强,李平日,谭惠中.. 西江―北江及珠江三角洲汇流区全新世 泥炭腐木层时空分布与环境变化[J]. 热带地理, 2016, 36(3): 313-325. |
[9] | 宗永强,黄光庆,熊海仙,李潇云,孙奕映.. 珠江三角洲晚第四纪地层、海平面变化 与构造运动的关系[J]. 热带地理, 2016, 36(3): 326-333. |
[10] | 刘纯瑶,殷鉴,刘春莲,黄毅,吴月琴.. 珠江三角洲全新世软体动物群记录与古环境演化[J]. 热带地理, 2016, 36(3): 355-363. |
[11] | 黄康有,何嘉卉,宗永强,郑卓,章桂芳,曹玲珑.. 珠江三角洲三水盆地早全新世以来 孢粉分析与古环境重建 [J]. 热带地理, 2016, 36(3): 364-373. |
[12] | 余少华,陈芳,谢叶彩,周洋,吴聪,陈炽新,龙桂.. 珠江口万顷沙晚第四纪沉积及古环境重建[J]. 热带地理, 2016, 36(3): 374-387. |
[13] | 万一兴,郑卓,萧一亭,汤永杰,陈聪.. 珠江口岛屿全新世沙堤的年代与沉积环境[J]. 热带地理, 2016, 36(3): 388-398. |
[14] | 王梦媛,郑卓,黄康有,张怡萌.. 海南岛南部MIS-5海相沉积地层的发现及其意义[J]. 热带地理, 2016, 36(3): 399-405. |
[15] | 周绮娴,杨小强,李剑,林清龙,彭杰,翁元忠,丁洁荧,刘春莲.. 晚更新世以来长江三角洲长尺度气候干旱事件 ——来自沉积物环境磁学的记录[J]. 热带地理, 2016, 36(3): 427-437. |
|