热带地理 ›› 2019, Vol. 39 ›› Issue (4): 538-545.doi: 10.13284/j.cnki.rddl.003156
• 专刊:无人机在生态学和地理学中的应用 • 上一篇 下一篇
孙中宇1,黄钰辉2,杨 龙1,王重洋1,孙红斌3,王佐霖3,张卫强2,甘先华2
出版日期:
2019-07-10
发布日期:
2019-07-10
通讯作者:
杨龙(1981—),男,陕西韩城人,博士,研究员,主要研究方向为恢复生态学,(E-mail)yanglong@gdas.ac.cn。
作者简介:
孙中宇(1986—),男,吉林榆树人,博士,副研究员,主要研究方向为森林生态学,(E-mail)sunzhyu@gdas.ac.cn;
基金资助:
广东省科技计划(2017A020216022、2018B030324002);坝光银叶树湿地园监测项目
Sun Zhongyu1, Huang Yuhui2, Yang Long1, Wang Chongyang1, Sun Hongbin3, Wang Zuolin 3, Zhang Weiqiang2 and Gan Xianhua2
Online:
2019-07-10
Published:
2019-07-10
摘要:
采用无人机低空遥感与地面调查相结合的方法对邻海陆地、远海陆地和盐生沼泽生境的古银叶树群落健康进行评价,利用冠层高度、林窗特征、光合有效辐射截面比、归一化植被指数(NDVI)、氮素反射指数(NRI)、黄色波段指数(YI)以及森林健康指数(FHI)等遥感指标指征古银叶树群落的健康状况。空-地结合的调查结果表明:1)盐生沼泽生境的古树由于树龄高,其树洞大且数量多,生境内生物多样性最低,邻海陆地生境的生物多样性最高。2)盐生沼泽生境的冠层高度最低;林窗面积最大,数量最少,形状复杂度最低;光合有效辐射截面比最小。以上指标在邻海陆地和远海陆地间差异不明显。NDVI、NRI、YI以及FHI的数值均表现出盐生沼泽小于远海陆地和邻海陆地的趋势,而在远海陆地和邻海陆地间的差异较小。3)无人机遥感的评价结果与地面调查结果契合度较高,客观地反映了不同生境古银叶树的健康状态。基于无人机遥感的评价体系在针对具体植物群落修改完善后,可以作为一种快速、无损和定量化的古树群落健康诊断方法。
孙中宇,黄钰辉,杨龙,王重洋,孙红斌,王佐霖,张卫强,甘先华. 基于无人机遥感的古银叶树群落健康快速诊断[J]. 热带地理, 2019, 39(4): 538-545.
Sun Zhongyu, Huang Yuhui, Yang Long, Wang Chongyang, Sun Hongbin, Wang Zuolin, Zhang Weiqiang and Gan Xianhua. Rapid Diagnosis of Ancient Heritiera littoralis Community Health Using UAV Remote Sensing[J]. TROPICAL GEOGRAPHY, 2019, 39(4): 538-545.
Arellano P, Tansey K, Balzter H and Boyd D S. 2015. Detecting the Effects of Hydrocarbon Pollution in the Amazon Forest Using Hyperspectral Satellite Images. Environmental Pollution, 205: 225-239.Brovkina O, Novotny J, Cienciala E, Zemek F and Russ R. 2017. Mapping Forest above Ground Biomass Using Airborne Hyperspectral and Lidar Data in the Mountainous Conditions of Central Europe. Ecological Engineering, 100: 219-230. Calderón R, Navas-Cortés J A, Lucena C and Zarco-Tejada P J. 2013. High-Resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive using Fluorescence, Temperature and Narrow-Band Spectral Indices. Remote Sensing of Environment, 139: 231-245. 陈晓霞,李瑜,茹正忠,昝欣,谭凤仪,昝启杰. 2015. 深圳坝光银叶树群落结构与多样性. 生态学杂志,34(6):1487-1498. [Chen Xiaoxia, Li Yu, Ru Zhengzhong, Zan Xin, Tan Fengyi and Zan Qijie. 2015. Community Structure and Diversity of Heritiera littoralis in Baguang of Shenzhen. Chinese Journal of Ecology, 34(6): 1487-1498. ] 范继英,唐学君. 2016. 深圳市大鹏半岛古银叶树群保护对策探讨. 华东森林经理,30(2):66-68. [Fan Jiying and Tang Xuejun. 2016. Protection Countermeasures of Ancient Heritiera littoralis Population in Dapeng Peninsula, Shenzhen City. East China Forest Management, 30(2): 66-68. ] Heumann B W. 2011. Satellite Remote Sensing of Mangrove Forests: Recent Advances and Future Opportunities. Progress in Physical Geography, 35(1): 87-108. 胡健波,张健. 2018. 无人机遥感在生态学中的应用进展. 生态学报,38(1):20-30. [Hu Jianbo and Zhang Jian. 2018. Unmanned Aerial Vehicle Remote Sensing in Ecology: Advances and Prospects. Acta Ecologica Sinica, 38(1): 20-30. ] 胡爽,徐誉远,王本洋. 2017. 我国森林健康评价方法综述. 林业与环境科学,33(1):90-96. [Hu Shuang, Xu Yuyuan and Wang Benyang. 2017. Review of Forest Health Monitoring and Assessment in China. Forestry and Environmental Science, 33(1): 90-96. ] 胡秀娟,徐涵秋,郭燕滨,张博博. 2017. 水土流失区生态修复后植被健康的遥感判别. 应用生态学报,28(1):250-256. [Hu Xiujuan, Xu Hanqiu, Guo Yanbin and Zhang Bobo. 2017. Remote Sensing Detection of Vegetation Health Status after Ecological Restoration in Soil and Water Loss Region.Chinese Journal of Applied Ecology, 28(1): 250-256. ] 简曙光,韦强,唐恬,任海. 2005. 深圳盐灶银叶树种群的生物学特性研究. 华南农业大学学报,26(4):84-87. [Jian Shuguang, Wei Qiang, Tang Tian and Ren Hai. 2005. Biological Characteristics of Heritiera littoralis Population in Yanzao, Shenzhen. Journal of South China Agricultural University, 26(4): 84-87. ] Lee L J, Hwang C, Chang C H, Burch M and Fernandes M. 2015. The Health Study of Seagrass and Coral Reef by Underwater Hyperspectral Imager. Geoscience & Remote Sensing Symposium, 3521-3523. DOI: 10.1109/IGARSS.2015.7326580. 刘瑜,徐程扬. 2013. 古树健康评价研究进展. 世界林业研究,26(1):37-42. [Liu Yu and Xu Chengyang. 2013. Research Progress in Ancient Trees Health Assessment. World Forestry Research, 26(1): 42-47. ] N?si R, Honkavaara E, Lyytik?inensaarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanp?? T and Holopainen M. 2015. Using UAV-based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-level. Remote Sensing, 7: 15467-15493. Pause M, Schweitzer C, Rosenthal M, Keuck V, Bumberger J, Dietrich P, Heurich M, Jung A and Lausch A. 2016. In Situ/Remote Sensing Integration to Assess Forest Health-a Review. Remote Sensing, 8: 471. DOI:10.3390/rs8060471. Piro P, Porti M, Veltri S, Lupo E and Moroni M. 2017. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-mediterranean Climate: Preliminary Results. Sensors, 17: 662-679. 邱建丽,李意德,陈德祥,骆土寿. 2008. 森林冠层结构的生态学研究现状与展望. 广东林业科技,24(1):75-82. [Qiu Jianli, Li Yide, Chen Dexiang and Luo Tushou. 2008. Current Situation and Prospect of Ecological Research on Forest Canopy Structure. Guangdong Forestry Science and Technology, 24(1): 75-82. ] 苏纯兰,陈葵仙,胡秋艳,叶永昌,李伟豪,张燕林,刘颂颂. 2016. 基于层次分析法构建东莞市古树名木健康评价体系. 林业与环境科学,32(2):57-62. [Su Chunlan, Chen Kuixian, Hu Qiuyan, Ye Yongchang, Li Weihao, Zhang Yanlin and Liu Songsong. 2016. Establishment of Health Assessment System for Ancient and Famous Trees in Dongguan. Forestry and Environmental Science, 32(2): 57-62. ] 孙中宇,陈燕乔,杨龙,唐光良,袁少雄,林志文. 2017. 轻小型无人机低空遥感及其在生态学中的应用进展. 应用生态学报,28(2):528-536. [Sun Zhongyu, Chen Yanqiao, Yang Long, Tang Guangliang, Yuan Shaoxiong and Lin Zhiwen. 2017. Light and Small Unmanned Aerial Vehicles for Low-altitude Remote Sensing and Its Application Progress in Ecology. Chinese Journal of Applied Ecology, 28(2): 528-536. ] Turner D, Lucieer A and Malenovsky Z. 2014. Spatial Co-registration of Ultra-high Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds. Remote Sensing, 6: 4003-4024. 王碧云,兰思仁. 2016. 古树名木价值评价研究综述. 林业建设,(3):42-47. [Wang Biyun and Lan Siren. 2016. Review on the Evaluation of the Value of Ancient and Famous Trees. Forestry Construction, (3): 42-47. ] 王伯荪,余世孝,胡玉佳. 1986. 深圳宝安盐灶的银叶树林. 生态科学,(2):89-91.[Wang Bosun, Yu Shixiao and Hu Yujia. 1986. Heritiera littoralis Forest in Yanzao, Baoan, Shenzhen. Ecological Science, (2): 89-91. ] 温达志,魏平,孔国辉,张倩媚,黄忠良. 1997. 鼎湖山锥栗+黄果厚壳桂+荷木群落生物量及其特征. 生态学报,17(5):47-54. [Wen Dazhi, Wei Ping, Kong Guohui, Zhang Qianmei and Huang Zhongliang. 1997. Biomass Study of the Community of Castanopsis chinesis+ Cryptocarya concinna+ Schima Superba in a Southern China Reserve. Acata Ecologica Sinica, 17(5): 47-54. ] 夏聪,黄华枝,龚志勤,叶广荣,何世庆. 2015. PICUS在华南地区古树健康状况与安全性评估中的应用研究. 河北林业科技,(3):24-30. [Xia Cong, Huang Huazhi, Gong Zhiqin, Ye Guangrong and He Shiqing. 2015. Application of PICUS in Health Status and Safety Assessment of Ancient Trees in South China. Journal of Hebei Forestry Science and Technology, (3): 24-30. ] 周威,刘建军,王京. 2016. 黄河中游地区古树健康诊断标准及其应用. 西南林业大学学报,36(6):58-63. [Zhou Wei, Liu Jianjun and Wang Jing. 2016. Diagnostic Criteria of Ancient Trees Health and Its Application in Middle Researches of Yellow River. Journal of Southwest Forestry University, 36(6): 58-63. ] 中国生态系统研究网络科学委员会. 2007. 陆地生态系统生物观测规范. 北京:中国环境科学出版社. [Chinese Ecosystem Research Network Scientific Committee. 2007. Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems. Beijing: China Environmental Science Press. ] |
[1] | 朱孟,周忠发,赵馨,黄登红,蒋翼,吴跃,崔亮. 基于无人机遥感的喀斯特高原峡谷区火龙果单株识别提取方法[J]. 热带地理, 2019, 39(4): 502-511. |
[2] | 陈黎,刘淑冰,李万能. 无人机遥感在河流岸线资源监管中的应用[J]. 热带地理, 2019, 39(4): 521-530. |
[3] | 黄登红,周忠发,吴跃,朱孟,尹林江,崔亮. 基于无人机可见光影像的高原丘陵盆地区山药植株识别[J]. 热带地理, 2019, 39(4): 571-582. |
[4] | 田义超,黄远林,陶进,张强,吴彬,张亚丽,黄鹄,梁铭忠,周国清. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算[J]. 热带地理, 2019, 39(4): 583-596. |
[5] | 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491. |
[6] | 梁宇哲,郑荣宝,徐嘉源,郑至键. 基于Citespace的无人机遥感研究知识图谱分析[J]. 热带地理, 2019, 39(2): 309-317. |
[7] | 许剑辉,赵怡,钟凯文,阮惠华,孙彩歌. 基于地理加权和最小二乘线性回归模型的 气温与NDVI聚集密度的相关分析 [J]. 热带地理, 2017, 37(2): 269-276. |
[8] | 冯家莉,刘凯,朱远辉,李勇,柳林,蒙琳. 无人机遥感在红树林资源调查中的应用[J]. 热带地理, 2015, 35(1): 35-42. |
[9] | 刘少军, 黄彦彬, 张京红, 李天富, 陈汇林, 陈德明. 利用 GIS地理统计模块预测海南岛植被指数季节性变化趋势[J]. 热带地理, 2006, 26(4): 319-322. |
|