热带地理 ›› 2019, Vol. 39 ›› Issue (4): 546-552.doi: 10.13284/j.cnki.rddl.003145
• 专刊:无人机在生态学和地理学中的应用 • 上一篇 下一篇
李 杰1,刘 强2
出版日期:
2019-07-10
发布日期:
2019-07-10
作者简介:
李杰(1984—),河北保定人,讲师,博士,主要从事自然地理学研究,(E-mail)jli_1984@hotmail.com。
基金资助:
国家自然科学基金项目(41601060)
Li Jie1 and Liu Qiang2
Online:
2019-07-10
Published:
2019-07-10
摘要:
无人机水禽监测具有高时空分辨率、高机动性等特性,较传统方法在监测范围、观察视角及数量统计精度等方面均有不同程度质量提升。但因其飞行方式灵活,且在监测水禽过程中与对象物种或集群距离较近,会对其行为等方面造成直接影响。因此,亟需构建合理有序的无人机水禽监测模式。文章使用微型多旋翼无人机(大疆御2 Pro)针对国际重要湿地纳帕海3种集群水鸟:①体长在80~120 cm之间的大型鸟:黑颈鹤(Grus nigricollis)集群;②体长在40~80 cm之间的中型鸟:绿头鸭(Anas platyrhynchos)集群;③体长<40 cm的小型鸟:骨顶鸡(Fulica atra)集群,通过不同飞行高度、拍摄角度等航拍方式对其进行无人机监测,并对比不同监测方式下,各水禽集群特征识别的差异及特点。文章列举了目前无人机水禽监测中对监测结果产生影响的部分问题,同时也提出了无人机水禽监测的一些原则供参考:1)无人机应尽量轻、小,以避免水禽将其误认为捕食者;2)在不惊飞水禽的前提下,尽量选择较低的飞行高度及合适速度;3)抵近水禽集群时,保持操作平顺与平稳,减少无人机状态突变;4)尽量减少无人机抵近水禽的时长,长时间监测应使无人机保持在水禽集群警戒距离之外,使用长焦镜头;5)因不同物种在不同时段、不同生境条件下对干扰的响应不同,因此无人机水禽监测时段和监测区的选择,应建立在对监测对象充分了解的基础上。
李杰,刘强. 无人机水禽监测模式的设立原则探讨[J]. 热带地理, 2019, 39(4): 546-552.
Li Jie and Liu Qiang. Prerequisites of Waterfowl Monitoring Using Unmanned Aerial Vehicle[J]. TROPICAL GEOGRAPHY, 2019, 39(4): 546-552.
Abd-Elrahman A, Pearlstine L and Percival F. 2005. Development of Pattern Recognition Algorithm for Automatic Bird Detection from Unmanned Aerial Vehicle Imagery. Surveying and Land Information Science, 65(1): 37-45.Allan B M, Ierodiaconou D, Nimmo D G, Herbert M and Ritchie E G. 2015. Free as a Drone: Ecologists Can Add UAVs to Their Toolbox. Frontiers in Ecology and the Environment, 13: 354-355. https://doi.org/10. 1890/15.WB.015. Anderson K and Gaston K J. 2013. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Frontiers in Ecology and the Environment, 11: 138-146. https://doi.org/10.1890/120150. Barnas A, Newman R, Felege C J, Corcoran M P, Hervey S D, Stechmann T J, Rockwell R F and Ellis-Felege S N. 2017. Evaluating Behavioral Responses of Nesting Lesser Snow Geese to Unmanned Aircraft Surveys. Ecology and Evolution, 8: 1328-1338. Chabot D and Bird D M. 2015. Wildlife Research and Management Methods in the 21st Century: Where Do Unmanned Aircraft Fit in? Journal of Unmanned Vehicle Systems, 3: 137–155. https://doi.org/10.1139/juvs- 2015-0021. Christie K S, Gilbert S L, Brown C L, Hatfield M and Hanson L. 2016. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. Front Ecol. Environ., 14(5): 241-251. DOI:10.1002/fee.1281. Conant B, Groves D J and Moser T J. 2007. Distribution and Abundance of Wildlife from Fixed-Wing Aircraft Surveys in Nunavut, June 2006. Juneau, Alaska: US Fish and Wildlife Service. Drever M C, Chabot D, O’Hara P D, Thomas J D, Breault A and Millikin R L. 2015. Evaluation of an Unmanned Rotorcraft to Monitor Wintering Waterbirds and Coastal Habitats in British Columbia, Canada. J. Unmanned Veh. Syst., 3: 259-267. Dulava S, Bean W T and Richmond O M W. 2015. Applications of Unmanned Aircraft Systems (UAS) for Waterbird Surveys. Environmental Practice, 17: 201-210. Hodgson A, Kelly N and Peel D. 2013. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE, 8(11): e79556. https://doi.org/10.1371/journal.pone.0079556. 胡健波,张健. 2018. 无人机遥感在生态学中的应用进展. 生态学报,38(1):20-30. [Hu Jianbo and Zhang Jian. 2018. Unmanned Aerial Vehicle Remote Sensing in Ecology: Advances and Prospects. Acta Ecologica Sinica, 38(1): 20-30. ] Li Jie, Hu Jinming, Deng Wei, Huang Shengli, Jia Haifeng, Zhu Chunling and Luo Huaixiu. 2013. Revealing Storage-area Relationship of Open Water in Ungauged Subalpine Wetland-Napahai in Northwest Yunnan, China. J. Mt. Sci., 10(4): 553-563. DOI: 10.1007/s11629-013-2596-6. 刘学先,冯理,韩联宪,闵龙,赵健林,松建华. 2008. 纳帕海湿地冬季水鸟种类与数量监测初报. 林业调查规划,33(1):66-69. [Liu Xuexian, Feng Li, Han Lianxian, Min Long, Zhao Jianlin and Song Jianhua. 2008. Preliminary Report on Monitoring of Quantity and Species of Winter Water Bird in Napahai Wetland. Forest Inventary and Planning, 33(1): 66-69. ] 罗巍,邵全琴,王东亮,汪阳春. 2017. 基于面向对象分类的大型野生食草动物识别方法——以青海三江源地区为例. 野生动物学报,38(4):561-564. [Luo Wei, Shao Quanqin, Wang Dongliang and Wang Yangchun. 2017. An Object-Oriented Classification Method for Detection of Large Wild Herbivores: a Case Study in the Source Region of Three Rivers in Qinghai. Chinese Journal of Wildlife, 38(4): 561-564. ] 马鸣,庭州,徐国华,道·才吾加甫,艾孜江·买买提明,邢睿,罗彪,吴道宁. 2015. 利用多旋翼微型飞行器监测天山地区高山秃鹫繁殖简报. 动物学杂志,50(2):306-310. [Ma Ming, Ting Zhou, Xu Guohua, Dao Caiwu-Jiapu, Aizijiang Maimaitiming, Xing Rui, Luo Biao and Wu Daoning. 2015. Brief Report on the Breeding Characteristics of Himalayan Vulture (Gyps himalayensis) in Tianshan Mountains via Telecraft Monitoring. Chinese Journal of Zoology, 50(2): 306-310. ] McEvoy J F, Hall G P and McDonald P G. 2016. Evaluation of Unmanned Aerial Vehicle Shape, Flight Path and Camera Type for Waterfowl Surveys: Disturbance Effects and Species Recognition. Peer J, 4: e1831. https://doi.org/10.7717/peerj.1831. Sarda-Palomera F, Bota G, Vinolo C, Pallares O, Sazatornil V, Brotons L, Gomariz S and Sarda F. 2012. Fine-scale Bird Monitoring from Light Unmanned Aircraft Systems. Ibis, 154: 177-183. https://doi.org/10. 1111/ j.1474-919X.2011.01177.x. 邵全琴,郭兴健,李愈哲,汪阳春,王东亮,刘纪远,樊江文,杨帆. 2018. 无人机遥感的大型野生食草动物种群数量及分布规律研究. 遥感学报,22(3):497-507. [Shao Quanqin, Guo Xingjian, Li Yuzhe, Wang Yangchun, Wang Dongliang, Liu Jiyuan, Fan Jiangwen and Yang Fan 2018. Using UAV Remote Sensing to Analyze the Population and Distribution of Large Wild Herbivores. Journal of Remote Sensing, 22(3): 497-507. ] Trathan P N. 2004. Image Analysis of Color Aerial Photography to Estimate Penguin Population Size. Wildlife Society Bulletin, 32: 332-343. https://doi.org/10.2193/0091-7648(2004)32[332:IAOCAP]2.0.CO;2. 张志明,徐倩,王彬,孙虎,耿宇鹏,田冀. 2017. 无人机遥感技术在景观生态学中的应用. 生态学报,37(12):4029-4036. [Zhang Zhiming, Xu Qing, Wang Bin, Sun Hu, Geng Yupeng and Tian Ji. 2017. Applications of Unmanned Aerial Vehicles Remote Sensing Technology in Landscape Ecology. Acta Ecologica Sinica, 37(12): 4029-4036. ] |
[1] | 汤涌, 项铮, 蒋腾平. 基于三维激光点云的复杂道路场景杆状交通设施语义分类[J]. 热带地理, 2020, 40(5): 893-902. |
[2] | 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491. |
[3] | 刘凯, 龚辉, 曹晶晶, 朱远辉. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501. |
[4] | 朱孟,周忠发,赵馨,黄登红,蒋翼,吴跃,崔亮. 基于无人机遥感的喀斯特高原峡谷区火龙果单株识别提取方法[J]. 热带地理, 2019, 39(4): 502-511. |
[5] | 张顺, 赵玉金, 白永飞, 杨龙, 孙中宇. 基于低空无人机的草原灌丛遥感辨识方法[J]. 热带地理, 2019, 39(4): 512-520. |
[6] | 陈黎,刘淑冰,李万能. 无人机遥感在河流岸线资源监管中的应用[J]. 热带地理, 2019, 39(4): 521-530. |
[7] | 吴隐,韩东,姚雪玲,张静,王锋. 基于无人机高分辨率航空影像的榆树疏林空间分布格局及其地形效应[J]. 热带地理, 2019, 39(4): 531-537. |
[8] | 孙中宇,黄钰辉,杨龙,王重洋,孙红斌,王佐霖,张卫强,甘先华. 基于无人机遥感的古银叶树群落健康快速诊断[J]. 热带地理, 2019, 39(4): 538-545. |
[9] | 王悦,练琚愉,张昭臣,胡健波,杨骥,李勇,叶万辉. 基于两种无人机航拍影像的林窗和林冠提取分析[J]. 热带地理, 2019, 39(4): 553-561. |
[10] | 周慧,苏有勇,王重洋,陈金月,赵晶,姜浩,陈水森,李丹. 利用无人机的多光谱参数预测荔枝叶片养分质量分数[J]. 热带地理, 2019, 39(4): 562-570. |
[11] | 黄登红,周忠发,吴跃,朱孟,尹林江,崔亮. 基于无人机可见光影像的高原丘陵盆地区山药植株识别[J]. 热带地理, 2019, 39(4): 571-582. |
[12] | 田义超, 黄远林, 陶进, 张强, 吴彬, 张亚丽, 黄鹄, 梁铭忠, 周国清. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算[J]. 热带地理, 2019, 39(4): 583-596. |
[13] | 江学顶,梁钊雄,周红艺,戴远锋,陈业昊. 基于无人机倾斜摄影技术的崩岗动态变化监测[J]. 热带地理, 2019, 39(4): 597-603. |
[14] | 张菁,孙千惠,叶震,杨默含,赵晓霞,巨袁臻,胡天宇,郭庆华. 生态遥感新锐——轻小型无人机的应用[J]. 热带地理, 2019, 39(4): 604-615. |
[15] | 王俊丽,任世奇,张忠华,胡刚,付瑞玉,周元慧,彭杏冰. 基于文献计量评价的无人机生态遥感监测研究进展[J]. 热带地理, 2019, 39(4): 616-624. |
|