热带地理 ›› 2019, Vol. 39 ›› Issue (4): 492-501.doi: 10.13284/j.cnki.rddl.003150
• 专刊:无人机在生态学和地理学中的应用 • 上一篇 下一篇
刘 凯1,龚 辉1,曹晶晶1,朱远辉2
出版日期:
2019-07-10
发布日期:
2019-07-10
作者简介:
刘凯(1979—),男,黑龙江伊春人,副教授,博士,主要从事环境遥感研究,(E-mail)liuk6@mail.sysu.edu.cn。
基金资助:
广东省自然科学基金项目(2016A030313261、2016A030313188);海洋公益性行业科研专项经费项目(201505012)
Liu Kai1, Gong Hui1, Cao Jingjing1 and Zhu Yuanhui2
Online:
2019-07-10
Published:
2019-07-10
摘要:
使用固定翼无人机、消费级旋翼无人机和专业级旋翼无人机获取广东珠海淇澳岛红树林保护区多类型无人机遥感影像,使用基于面向对象分类的K-最近邻与随机森林分类器对研究区影像进行红树林树种精细分类和对比分析,并探讨了不同类型无人机平台在红树林资源调查应用中的优缺点。结果表明:1)固定翼无人机、消费级旋翼无人机和专业级旋翼无人机数据使用K-最近邻法的分类精度分别为:73.8%、72.8%和79.7%;使用随机森林法的分类精度分别为:81.1%、84.8%和89.3%。3种平台类型的无人机数据均适用于红树林精细分类研究,对于无人机红树林遥感数据,随机森林的分类方法优于K-最近邻方法。2)以拍摄面积与用时之比估算采集效率,固定翼无人机、消费级旋翼无人机和专业级旋翼无人机分别为0.036、0.013和0.003 km2/min。固定翼无人机的采集效率具有明显优势。3)固定翼无人机适合大范围红树林数据采集,要求较高;消费级旋翼无人机适于获取小范围精细数据,成本低且易学易用;专业级旋翼无人机适合搭载质量稍大的如成像光谱仪、LiDAR等专业传感器获取多源数据。最后给出了无人机在红树林遥感研究中的注意事项和建议。
刘凯, 龚辉, 曹晶晶, 朱远辉. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501.
Liu Kai, Gong Hui, Cao Jingjing and Zhu Yuanhui. Comparison of Mangrove Remote Sensing Classification Based on Multi-type UAV Data[J]. Tropical Geography, 2019, 39(4): 492-501.
Akar ?. 2018. The Rotation Forest Algorithm and Object-Based Classification Method for Land Use Mapping through UAV Images. Geocarto International, 33(5): 538-553. Alongi D M. 2015. The Impact of Climate Change on Mangrove Forests. Current Climate Change Reports, 1(1): 30-39. Bohler J, Schaepman M and Kneubuhler M. 2018. Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sensing, 10(8): 1282. Breiman L. 2001. Random Forests. Machine Learning, 45(1): 5-32. 崔小芳,刘正军.2018.基于随机森林分类方法和多源遥感数据的湿地植被精细分类.测绘与空间地理信息,41(8):113-116.[Cui Xiaofang and Liu Zhengjun. 2018. Wetland Vegetation Classification Based on Object-Based Classification Method and Multi-Source Remote Sensing Images. Geomatics & Spatial Information Technology, 41(8): 113-116. ] Fraser B T and Congalton R G. 2019. Evaluating the Effectiveness of Unmanned Aerial Systems (UAS) for Collecting Thematic Map Accuracy Assessment Reference Data in New England Forests. Forests, 10(1): 24. 冯家莉,刘凯,朱远辉,李勇,柳林,蒙琳.2015.无人机遥感在红树林资源调查中的应用.热带地理,35(1):35-42.[Feng Jiali, Liu Kai, Zhu Yuanhui, Li Yong, Liu Lin and Meng Lin. 2015. Application of Unmanned Aerial Vehicles to Mangrove Resources Monitoring. Tropical Geography, 35(1): 35-42. ] 郭庆华,吴芳芳,胡天宇,陈琳海,刘瑾,赵晓倩,高上,庞树鑫.2016.无人机在生物多样性遥感监测中的应用现状与展望.生物多样性,24(11):1267-1278.[Guo Qinghua, Wu Fangfang, Hu Tianyu, Chen Linhai, Liu Jin, Zhao Xiaoqian, Gao Shang and Pang Shuxin. 2016. Perspectives and Prospects of Unmanned Aerial Vehicle in Remote Sensing Monitoring of Biodiversity. Biodiversity Science, 24(11): 1267-1278. ] 洪宇,龚建华,胡社荣,黄明祥.2008.无人机遥感影像获取及后续处理探讨.遥感技术与应用,23(4):462-466.[Hong Yu, Gong Jianhua, Hu Sherong and Huang Mingxiang. 2008. Discussion on UAV Remote Sensing Image Capture and Disposal. Remote Sensing Technology and Application, 23(4): 462-466. ] 胡健波,张健.2018.无人机遥感在生态学中的应用进展.生态学报,38(1):20-30.[Hu Jianbo and Zhang Jian. 2018. Unmanned Aerial Vehicle Remote Sensing in Ecology: Advances and Prospects. Acta Ecologica Sinica, 38(1): 20-30. ] 贾慧,杨柳,郑景飚.2018.无人机遥感技术在森林资源调查中的应用研究进展.浙江林业科技,38(4):89-97.[Jia Hui, Yang Liu and Zheng Jingbiao. 2018. Advances of UAV Remote Sensing Applied in Forest Resources Investigation. Journal of Zhejiang Forestry Science and Technology, 38(4): 89-97. ] Liu X and Bo Y. 2015. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data. Remote Sensing, 7(1): 922-950. 李祥,郑淯文,戴楚彦,林文树.2017.基于无人机影像的森林信息获取研究进展.世界林业研究,30(4):41-46.[Li Xiang, Zheng Yuwen, Dai Chuyan and Lin Wenshu. 2017. Research Progress of Forest Information Acquisition Based on Unmanned Aerial Vehicle (UAV) Image. World Forestry Research, 30(4): 41-46. ] 李亚东,冯仲科,明海军,李长青,曹明兰.2017.无人机航测技术在森林蓄积量估测中的应用.测绘通报,(4):63-66.[Li Yadong, Feng Zhongke, Ming Haijun, Li Changqing and Cao Minglan. 2017. Application of UAV Aerophotographic System in Forest Volume Estimation. Bulletin of Surveying and Mapping, (4): 63-66. ] Marois D E and Mitsch W J. 2015. Coastal Protection from Tsunamis and Cyclones Provided by Mangrove Wetlands-a Review. International Journal of Biodiversity Science, Ecosystem Services and Management, 11(1): 71-83. 穆亚南,丁丽霞,李楠,陆琳莹,吴明.2018.基于面向对象和随机森林模型的杭州湾滨海湿地植被信息提取.浙江农林大学学报,35(6):1088-1097.[Mu Yanan, Ding Lixia, Li Nan, Lu Linying and Wu Ming. 2018. Classification of Coastal Wetland Vegetation in Hangzhou Bay with an Object-Oriented, Random Forest Model. Journal of Zhejiang A & F University, 35(6): 1088-1097. ] Roma?ach S S, DeAngelis D L, Koh H L, Li Y, Teh S Y, Raja B and Zhai L. 2018. Conservation and Restoration of Mangroves: Global Status, Perspectives, and Prognosis. Ocean and Coastal Management, 154: 72-82. 孙刚,黄文江,陈鹏飞,高帅,王秀.2018.轻小型无人机多光谱遥感技术应用进展.农业机械学报,49(3):1-17.[Sun Gang, Huang Wenjiang, Chen Pengfei, Gao Shuai and Wang Xiu. 2018. Advances in UAV-based Multispectral Remote Sensing Applications. Transactions of the Chinese Society for Agricultural Machinery, 49(3): 1-17. ] 孙中宇,陈燕乔,杨龙,唐光良,袁少雄,林志文.2017.轻小型无人机低空遥感及其在生态学中的应用进展.应用生态学报,28(2):528-536.[Sun Zhongyu, Chen Yanqiao, Yang Long, Tang Guangliang, Yuan Shaoxiong and Lin Zhiwen. 2017. Small Unmanned Aerial Vehicles for Low-Altitude Remote Sensing and Its Application Progress in Ecology. Chinese Journal of Applied Ecology, 28(2): 528-536. ] Thomas C and Hart P. 1967. Nearest Neighbor Pattern Classification. Ieee Transactions on Information Theory, 13(1): 21-27. Tuominen S, N?si R, Honkavaara E, Balazs A, Hakala T, Viljanen N, P?l?nen I, Saari H and Ojanen H. 2018. Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. Remote Sensing, 10(5): 714. 唐露新,于丽敏,张宇维.2018.民用无人机系统的研究与应用.机床与液压,46(5):127-133.[Tang Luxin, Yu Limin and Zhang Yuwei. 2018. Application and Research of the Civil UAV System. Machine Tool & Hydraulics, 46(5): 127-133. ] Valiela I, Bowen J L and York J. 2001. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience, 51(10): 807-815. Wu Z, Ni M, Hu Z, Wang J, Li Q and Wu G. 2019. Mapping Invasive Plant with UAV-derived 3D Mesh Model in Mountain Area-a Case Study in Shenzhen Coast, China. International Journal of Applied Earth Observation and Geoinformation, 77: 129-139. 王震,陈卫军,管伟,廖宝文,何克宏,陈蔚,谢敏.2017.珠海市淇澳岛主要红树林群落特征研究.中南林业科技大学学报,(4):86-91.[Wang Zhen, Chen Weijun, Guan Wei, Liao Baowen, He Kehong, Chen Wei and Xie Min. 2017. Study on Zhuhai Qi’ao Island Main Mangrove Community Characteristics. Journal of Central South University of Forestry & Technology, (4): 86-91. ] Yu Q, Gong P, Clinton N, Biging G, Kelly M and Schirokauer D. 2006. Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogrammetric Engineering & Remote Sensing, 72(7): 799-811. 杨海军,黄耀欢.2015.化工污染气体无人机遥感监测.地球信息科学学报,17(10):1269-1274.[Yang Haijun and Huang Yaohuan. 2015. Evaluating Atmospheric Pollution of Chemical Plant Based on Unmanned Aircraft Vehicle(UAV). Journal of Geo-Information Science, 17(10): 1269-1274. ] 杨力龙. 2017.基于轻小型无人机的航空摄影测量技术在高陡边坡几何信息勘察中的应用研究.成都:西南交通大学.[Yang Lilong. 2017. Application of Aerial Photogrammetry Based on Light and Small Unmanned Aerial Vehicle in Geometric Information Survey of High and Steep Slope. Chengdu: Southwest Jiaotong University. ] 杨龙,孙中宇,唐光良,林志文,陈燕乔,黎喻,李勇.2016.基于微型无人机遥感的亚热带林冠物种识别.热带地理,36(5):833-839.[Yang Long, Sun Zhongyu, Tang Guangliang, Lin Zhiwen, Chen Yanqiao, Li Yu and Li Yong. 2016. Identifying Canopy Species of Subtropical Forest by Lightweight Unmanned Aerial Vehicle Remote Sensing. Tropical Geography, 36(5): 833-839. ] Zhu X, Hou Y, Weng Q and Chen Luzhen. 2019. Integrating UAV Optical Imagery and LiDAR Data for Assessing the Spatial Relationship between Mangrove and Inundation Across a Subtropical Estuarine Wetland. Isprs Journal of Photogrammetry and Remote Sensing, 149: 146-156. |
[1] | 王子予, 刘凯, 彭力恒, 曹晶晶, 孙映雪, 钱雨昕, 史舒悦. 基于Google Earth Engine的1986—2018年广东红树林年际变化遥感分析[J]. 热带地理, 2020, 40(5): 881-892. |
[2] | 王艳阳, 梁宇哲, 罗伟玲, 谢贻新, 刘济坤. 基于高分遥感影像和POI的国土空间规划现状细化调查[J]. 热带地理, 2020, 40(4): 649-658. |
[3] | 张丽, 廖静娟, 袁鑫, 穆晓东, 宋茜茜, 毕京鹏. 1987—2017年海南岛海岸线变化特征遥感分析[J]. 热带地理, 2020, 40(4): 659-674. |
[4] | 周胜男, 施祺, 郭华雨, 杨红强, 严宏强. 2009—2017年南沙群岛珊瑚礁砾洲演变[J]. 热带地理, 2020, 40(4): 694-708. |
[5] | 丁智强, 高璇, 角媛梅, 李玉辉, 郭汝军. 基于空间密度函数的哈尼梯田世界遗产地滑坡时空格局变化[J]. 热带地理, 2020, 40(3): 478-486. |
[6] | 张晨, 周霞, 李勇, 杨骥, 李林. 半封闭大棚实验下广州市植被滞尘光谱特征分析[J]. 热带地理, 2020, 40(2): 266-277. |
[7] | 刘文祥, 舒远仲, 唐小敏, 刘金梅. 采用双注意力机制Deeplabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2): 303-313. |
[8] | 温开祥, 李勇, 王华, 杨骥, 荆文龙, 杨传训. 基于遥感和机器学习的内陆水体水深反演技术[J]. 热带地理, 2020, 40(2): 314-322. |
[9] | 赵丽娴, 李长辉, 宋杨, 李熙. 基于夜光遥感影像的粤港澳地区城市发展时空格局演变[J]. 热带地理, 2020, 40(2): 243-253. |
[10] | 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491. |
[11] | 朱孟,周忠发,赵馨,黄登红,蒋翼,吴跃,崔亮. 基于无人机遥感的喀斯特高原峡谷区火龙果单株识别提取方法[J]. 热带地理, 2019, 39(4): 502-511. |
[12] | 张顺, 赵玉金, 白永飞, 杨龙, 孙中宇. 基于低空无人机的草原灌丛遥感辨识方法[J]. 热带地理, 2019, 39(4): 512-520. |
[13] | 陈黎,刘淑冰,李万能. 无人机遥感在河流岸线资源监管中的应用[J]. 热带地理, 2019, 39(4): 521-530. |
[14] | 吴隐,韩东,姚雪玲,张静,王锋. 基于无人机高分辨率航空影像的榆树疏林空间分布格局及其地形效应[J]. 热带地理, 2019, 39(4): 531-537. |
[15] | 孙中宇,黄钰辉,杨龙,王重洋,孙红斌,王佐霖,张卫强,甘先华. 基于无人机遥感的古银叶树群落健康快速诊断[J]. 热带地理, 2019, 39(4): 538-545. |
|