热带地理 ›› 2019, Vol. 39 ›› Issue (4): 604-615.doi: 10.13284/j.cnki.rddl.003154
• 专刊:无人机在生态学和地理学中的应用 • 上一篇 下一篇
张 菁1,2,孙千惠1,2,叶 震3,杨默含4,赵晓霞5,巨袁臻3,胡天宇1,2,郭庆华1,2
出版日期:
2019-07-10
发布日期:
2019-07-10
通讯作者:
郭庆华(1973—),男,教授,博士生导师,主要从事激光雷达在生态学领域的研究,(E-mail)qguo@ibcas.ac.cn。
作者简介:
张菁(1995—),女,甘肃人,硕士研究生,主要从事城市生态学研究,(E-mail)eve.zhangj@gmail.com;627517643@qq.com;
基金资助:
“十三五”森林质量精准提升工程监测研究(0011107)
Zhang Jing1,2, Sun Qianhui1,2, Ye Zhen3, Yang Mohan4, Zhao Xiaoxia5, Ju Yuanzhen3, Hu Tianyu1,2 and Guo Qinghua1,2
Online:
2019-07-10
Published:
2019-07-10
摘要:
基于研究对象视角梳理轻小型无人机遥感手段在生态学研究中的应用现状,重点分析了无人机在不同生态对象应用的优势和局限:优势主要在于其能够高灵活性、高分辨率地获取各生态对象的数据,为较大规模的生态研究提供了便利。在农田生态系统应用中主要关注农田信息检测、自动化农作等方面,但在这方面的应用还比较单一,缺乏更深层更全面的系统化应用;在森林草地中主要关注植被结构参数提取、生物量反演等,在数据采集过程中应注意设备的稳定性避免对数据准确性造成影响;城市生态系统主要集中在城市环境监测和测绘方面,同时城市方面飞控政策尚待完善;水生生态系统主要关注水生动植物监测和潮间带观测等,大规模监测也对设备续航和数据标准化处理提出了要求;动物研究应用中主要关注动物迁徙规律、物种分布等方面,在监测过程中需注意不要对动物栖息造成干扰。总的来说,无人机应用局限主要在于其获取的数据处理尚未标准化,飞控政策尚未成熟和硬件续航等方面。在此基础上探讨了未来无人机遥感在生态学研究的应用趋势:随着无人机智能化的软硬件发展和云端生态大数据的建立,无人机数据的获取和处理将更加智慧化,多源的无人机遥感数据将会更好地服务于生态学研究。
张菁,孙千惠,叶震,杨默含,赵晓霞,巨袁臻,胡天宇,郭庆华. 生态遥感新锐——轻小型无人机的应用[J]. 热带地理, 2019, 39(4): 604-615.
Zhang Jing, Sun Qianhui, Ye Zhen, Yang Mohan, Zhao Xiaoxia, Ju Yuanzhen, Hu Tianyu and Guo Qinghua. New Technology for Ecological Remote Sensing: Light, Small Unmanned Aerial Vehicles (UAV)[J]. TROPICAL GEOGRAPHY, 2019, 39(4): 604-615.
Airam R, Negro J J, Mara M, Carlos R, Jesús H P and Javier B. 2012. The Eye in The Sky: Combined Use of Unmanned Aerial Systems and GPS Data Loggers for Ecological Research and Conservation of Small Birds. PLoS One, 7(12): e50336. Shiklomanov A N, Bradley B A, Dahlin K M, Fox A M, Gough C M, Hoffman F M, Middleton E M, Serbin S P, Smallman L and Smith W K. 2019. Enhancing Global Change Experiments through Integration of Remote-Sensing Techniques. Front Ecol. Environ., 17(4):215-224. https://doi.org/ 10.1002/fee.2031. Belbachir A, Escareno J, Rubio E and Sossa H. 2015. Preliminary Results on UAV-based Forest Fire Localization Based on Decisional Navigation. Cancun,Mexico: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), 377-382. DOI: 10.1109/RED-UAS.2015.7441030. Caldwell S H, Kelleher C, Baker E A and Lautz L K. 2019. Relative Information from Thermal Infrared Imagery Via Unoccupied Aerial Vehicle Informs Simulations and Spatially-Distributed Assessments of Stream Temperature. Science of the Total Environment, 661: 364-374. Chianucci F, Disperati L, Guzzi D, Bianchini D, Nardino V, Lastri C, Rindinella A and Corona P. 2016. Estimation of Canopy Attributes in Beech Forests Using True Colour Digital Images from A Small Fixed-Wing UAV. International Journal of Applied Earth Observation and Geoinformation, 47: 60-68. 程涛,徐宗学,洪思扬,汪中华. 2018. 城市洪涝模拟中无人机摄影测量技术应用进展. 水力发电学报,38(4):1-10. [Cheng Tao, Xu Zongxue, Hong Siyang and Wang Zhonghua. 2018. Review on the Applecation of UAV_based Photogrammetry Urban Flood Modeling. Journal of Hydroelectric Engineering, 38 (4): 1-10. ] Dandois J P and Ellis E C. 2013. High Spatial Resolution Three- Dimensional Mapping of Vegetation Spectral Dynamics Using Computer Vision. Remote Sensing of Environment, 136: 259–276. Evans L J, Jones T H, Pang K, Saimin S and Goossens B. 2016. Spatial Ecology of Estuarine Crocodile (Crocodylus porosus) Nesting in a Fragmented Landscape. Sensors, 16(9): 1-10. 方德涛,刘珊珊,张笑. 2019. 低空无人机遥感系统在海岛潮间带监测中的应用. 北京测绘,33(1):71-75. [Fang Detao, Liu Shanshan and Zhang Xiao. 2019. Application of Low Altitude UAV Remote Sensing in Intertidal Zone Monitoring of Islands. Beijing Surveying and Mapping, 33(1): 71-75. ] 高辉,王秋平,赵新刚,潘从元. 2016. 基于旋翼无人机的农业低空高光谱遥感技术. 科技创新导报,13(2):170-171. [Gao Hui, Wang Qiuping, Zhao Xingang and Pan Congyuan. 2016. Unmanned Aerial Vehicles Based Hyperspectral Remote Sensing Techniques for Agricultural Applications. Science and Technology Innovation Herald, 13(2): 170-171. ] 冯江. 2014. 无人机技术在现代农业生产中的应用. 农业技术与装备,20(5):26-28. [Feng Jiang. 2014. Application of UAV Technology in Modern Agricultural Production. Agricultural Technology And Equipment, 20 (5): 26-28. ] 高燕,梁泽毓,王彪,吴艳兰,刘诗雨. 2019. 基于无人机和卫星遥感影像的升金湖草滩植被地上生物量反演. 湖泊科学,31(2):517-528. [Gao Yan, Liang Zeyu, Wang Biao, Wu Yanlan and Liu Shiyu. 2019. UAV and Satellite Remote Sensing Images Based Aboveground Biomass Inversion in The Meadows of Lake Shengjin. J. Lake Sci., 31(2): 517-528. ] 郭庆华,吴芳芳,胡天宇,陈琳海,刘瑾,赵晓倩,高上,庞树鑫. 2016. 无人机在生物多样性遥感监测中的应用现状与展望. 生物多样性,24(11):1267-1278. [Guo Qinghua, Wu Fangfang, Hu Tianyu, Chen Linhai, Liu Wei, Zhao Xiaoqian, Gao Shang and Pang Shuxin. 2016. Perspectives and Prospects of Unmanned Aerial Vehicle in Remote Sensing Monitoring of Biodiversity. Biodiversity Science, 24(11): 1267-1278. ] Gini R, Passoni D, Pinto L and Sona G. 2012. Aerial Images from an UAV System: 3D Modeling and Tree Species Classification in a Park Area. Melbourne, Australia: XXII ISPRS Congress, Technical Commission I, 39-B1: 361-366. DOI: 10.5194/isprsarchives-XXXIX-B1-361-2012. Goldsmith K A, Granek E F and Lubitow A. 2015. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions. Environmental Management, 56(6): 1502- 1513. Guo Q, Li W, Yu H and Alvarez O. 2010. Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods. Photogrammetric Engineering and Remote Sensing, 76(6): 701-712. Hodgson J C, Baylis S M, Mott R, Herrod A and Clarke R H. 2016. Precision Wildlife Monitoring Using Unmanned Aerial Vehicles. Scientific Reports, 6: 22574. Honkavaara E, Rosnell T, Oliveira R and Tommaselli A. 2017. Band Registration of Tuneable Frame Format Hyperspectral UAV Imagers in Complex Scenes. Isprs Journal of Photogrammetry and Remote Sensing, 134: 96-109. 胡健波,张健. 2018. 无人机遥感在生态学中的应用进展. 生态学报,38(1):20-30. [Hu Jianbo and Zhang Jian. 2018. Unmanned Aerial Vehicle Remote Sensing in Ecology: Advances and Prospects. Acta Ecologica Sinica, 38(1): 20-30. ] Hu T, Su Y, Xue B, Liu J, Zhao X, Fang J and Guo Q. 2016. Mapping Global Forest Aboveground Biomass with Spaceborne Lidar, Optical Imagery, and Forest Inventory Data. Remote Sensing, 8(7): 1-27. Huang H, Deng J, Lan Y, Yang A, Deng X and Zhang L. 2018. A Fully Convolutional Network for Weed Mapping of Unmanned Aerial Vehicle (UAV) Imagery. PLoS One, 13(4): e0196302. Ishida T, Kurihara J, Viray F A, Namuco S B, Paringit E C, Perez G J, Takahashi Y and Marciano J J. 2018. A Novel Approach for Vegetation Classification Using UAV-Based Hyperspectral Imaging. Computers and Electronics in Agriculture, 144: 80-85. Israel M. 2011. A UAV-based Roe Deer Fawn Detection System. Zurich, Switzerland: Conference on Unmanned Aerial Vehicle in Geomatics. DOI: 10.5194/isprsarchives-XXXVIII-1-C22-51-2011. Jakubowski M, Guo Q and Kelly M. 2013. Tradeoffs between Lidar Pulse Density And Forest Measurement Accuracy. Remote Sensing of Environment, 130(3): 245-253. Jia H C, Pan D H and Zhang W C. 2015. Health Assessment of Wetland Ecosystems in the Heilongjiang River Basin, China. Wetlands, 35(6): 1185-1200. 井然,邓磊,赵文吉,宫兆宁. 2016. 基于可见光植被指数的面向对象湿地水生植被提取方法. 应用生态学报,27(5):1427-1436. [Jing Ran, Deng Lei, Zhao Wenji and Gong Zhaoning. 2016. Object-oriented Aquatic Vegetation Extracting Approach Based on Visible Vegetation Indices. Chinese Journal of Applied Ecology, 27(5): 1427-1436. ] 井然,宫兆宁,赵文吉,邓磊,阿多,孙伟东. 2017. 基于无人机SfM数据的挺水植物生物量反演. 生态学报,37(22):7698-7709. [Jing Ran, Gong Zhaoning, Zhao Wenji, Deng Lei, A Duo and Sun Weidong. 2017. Estimating Biomass of Emergent Aquatic Plants Based on UAV SfM data. Acta Ecologica Sinica, 37(22): 7698-7709. ] Li L, Guo Q, Tao S, Kelly M and Xu G. 2015. Lidar with Multi-Temporal MODIS Provide a Means to Upscale Predictions of Forest Biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 102(4): 198-208. Lin Y, Jiang M, Yao Y J, Zhang L F and Lin J Y. 2015. Use of UAV Oblique Imaging for the Detection of Individual Trees in Residential Environments. Urban Forestry and Urban Greening, 14(2): 404-412. 李冰,刘镕源,刘素红,刘强,刘峰,周公器. 2012. 基于低空无人机遥感的冬小麦覆盖度变化监测. 农业工程学报,28(13):160-165. [Li Bing, Liu Rongyuan, Liu Suhong, Liu Qiang, Liu Feng and Zhou Gongqi. 2012. Monitoring Vegetation Coverage Variation of Winter Wheat By Low-Altitude UAV Remote Sensing System. Transactions of the Chinese Society of Agricultural Engineering, 28(13): 160-165. ] 李莹,于海洋,王燕,吴建鹏,杨礼. 2019. 基于无人机重建点云与影像的城市植被分类. 国土资源遥感,(1):149-155. [Li Ying, Yu Haiyang, Wang Yan, Wu Jianpeng and Yang Li. 2019. Classification of Urban Vegetation Based on Unmanned Aerial Vehicle Reconstruction Point Cloud and Image. Remote Sensing for Land and Resources, (1): 149-155. ] 廖小罕,周成虎,苏奋振,卢海英,岳焕印,缑吉平. 2016a. 无人机遥感众创时代. 地球信息科学学报,18(11):1439-1447. [Liao Xiaohan, Zhou Chenghu, Su Chongzhen, Lu Haiying, Yue Huanyin and Gou Jiping. 2016a. The Mass Innovation Era of UAV Remote Sensing. Journal of Geo-Information Science, 18(11): 1439-1447. ] 廖小罕,周成虎. 2016b. 轻小型无人机遥感发展报告. 北京:科学出版社. [Liao Xiaohan and Zhou Chenghu. 2016b. Light and Small UAV Remote Sensing Development Report. Beijing: Science Press. ] 马鸣,庭州,徐国华,道·才吾加甫,艾孜江·买买提明,邢睿,罗彪,吴道宇. 2015. 利用多旋翼微型飞行器监测天山地区高山兀鹫繁殖简报. 动物学杂志,50(2):306-310.[Ma Ming, Ting Zhou, Xu Guohua, Dao Caiwujiapu, Aizijiang Maimaitiming, Xing Rui, Luo Biao and Wu Daoyu. 2015. Telecraft Monitoring on the Breeding Ecology of Himalayan Griffon Vulture Gyps Himalayensis in Tianshan Mountains. Chinese Journal of Zoology, 50(2): 306-310. Marcaccio J V, Markle C E and Chow-Fraser P. 2015. Unmanned Aerial Vehicles Produce High-Resolution, Seasonally-Relevant Imagery For Classifying Wetland Vegetation. Toronto, Canada: International Conference on Unmanned Aerial Vehicles in Geomatics. Messinger M, Asner G P and Silman M. 2016. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems. Remote Sensing, 8: 615-629. DOI:10.3390/rs8080615. Mohan M, Silva C A, Klauberg C, Jat P, Catts G, Cardi A, Hudak A T and Dia M. 2017. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests, 8(9): 340-357. DOI:10.3390/f8090340. N?si R, Honkavaara E, Blomqvist M, Lyytik?inen-Saarenmaa P, Hakala T, Viljanen N, Kantola T and Holopainen M. 2018. Remote Sensing of Bark Beetle Damage in Urban Forests at Individual Tree Level Using a Novel Hyperspectral Camera from UAV and Aircraft. Urban Forestry and Urban Greening, 30: S1618866716305581. Puttock A K, Cunliffe A M, Anderson K and Brazier R E. 2015. Aerial Photography Collected with a Multirotor Drone Reveals Impact of Eurasian Beaver Reintroduction on Ecosystem Structure. Journal of Unmanned Vehicle Systems, 3(3): 150429143447007. Rupasinghe P A, Simic Milas A, Arend K, Simonson M A, Mayer C and Mackey S. 2019. Classification of Shoreline Vegetation in the Western Basin of Lake Erie Using Airborne Hyperspectral Imager HSI2, Pleiades and UAV Data. International Journal of Remote Sensing, 40(8): 3008-3028. Sheng Q, Zhang Y, Zhu Z, Li W, Xu J and Tang R. 2019. An Experimental Study to Quantify Road Greenbelts and Their Association with PM2.5 Concentration along City Main Roads in Nanjing, China. The Science of the Total Environment, 667: 710-717. Su X, Dong S, Liu S, Cracknell A P, Yong Z, Wang X and Liu G. 2018. Using an Unmanned Aerial Vehicle (UAV) to Study Wild Yak in The Highest Desert in the World. International Journal of Remote Sensing, (1): 1-14. Su Y, Guo Q, Xue B, Hu T, Alvarez O, Tao S and Fang J. 2016a. Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data. Remote Sensing of Environment, 173(2): 187-199. Su Y, Guo Q, Fry D L, Collins B M, Kelly M, Flanagan J and Battles J. 2016b. A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne Lidar Data and Aerial Imagery. Canadian Journal of Remote Sensing, 42(1): 1-15. Su Y, Ma Q, Guo Q, Kean J J, Gerrard R and Gallagher C V. 2016c. Fine-Resolution Forest Tree Height Estimation across the Sierra Nevada through the Integration of Spaceborne Lidar, Airborne Lidar and Optical Imagery. International Journal of Digital Earth, 10(3): 307-323. Tamminga A, Hugenholtz C, Eaton B and Lapointe M J R R. 2015. Applications Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Research & Applications, 31(3): 379-391. Tao S, Guo Q, Li L, Xue B, Kelly M, Li W, Xu G and Su Y. 2014. Airborne Lidar-Derived Volume Metrics for Aboveground Biomass Estimation: A Comparative Assessment For Conifer Stands. Agricultural and Forest Meteorology, 198(12): 24-32. 谭金石,黄书华,黄正忠. 2018. 基于无人机遥感的海岛礁监测技术研究. 测绘地理信息,43(6):55-57. [Tan Jinshi, Huang Shuhua and Huang Zhengzhong. 2018. Research on Island Reef Monitoring Technology Based on UAV Remote Sensing. Journal of Geomatics, 43(6): 55-57. ] Tokarczyk P, Leitao J P, Rieckermann J, Schindler K and Blumensaat F J H. 2015. High-quality Observation of Surface Imperviousness for Urban Runoff Modelling Using UAV Imagery. Hydrology and Earth System Sciences, 12(1): 1205-1245. Vermeulen C, Lejeune P, Lisein J, Sawadogo P and Bouch? P. 2013. Unmanned Aerial Survey of Elephants. PLoS One, 8(2): e54700. Wallace L, Lucieer A and Watson C S. 2014. Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 52(12): 7619- 7628. 肖武,任河,吕雪娇,闫皓月,孙诗睿. 2019. 基于无人机遥感的高潜水位采煤沉陷湿地植被分类. 农业机械学报,50(2):184-193. [Wu Xiao, Ren He, Lu Xuejiao, Yan Haoyue and Sun Shirui. 2019. Vegetation Classification by Using UAV Remote Sensing in Coal Mining Subsidence Wetland with High Ground-water Level. Transactions of the Chinese Society for Agricultural Machinery, 50(2): 177-186. ] 杨柳,陈延辉,岳德鹏,冯仲科. 2017. 无人机遥感影像的城市绿地信息提取. 测绘科学,42(2):59-64. [Yang Liu, Chen Yanhui, Yue Depeng and Feng Zhongke. 2017. Information Extraction of Urban Green Space Based on UAV Remote Sensing Image. Science of Surveying and Mapping, 42(2): 59-64. ] 姚仲敏,荆宝刚,逄世良. 2016. 基于WSN的无人机扎龙湿地鹤类图像监测系统. 家畜生态学报,37(12):44-48. [Yao Zhongmin, Jing Baogang and Yan Shiliang. 2016. Design of Crane Image Monitoring System Based on Wireless Sensor Network and Unmanned Aerial Vehicle in Zhalong Wetland. Acta Ecologae Animalis Domastici, 37 (12): 44-48. ] 于贵瑞,何洪林,周玉科. 2018. 大数据背景下的生态系统观测与研究. 中国科学院院刊,33(8):832-837. [Yu Guirui, He Honglin and Zhou Yuke. 2018. Ecosystem Observation and Research under Background of Big Data. Bulletin of Chinese Academy of Sciences, 33(8): 832- 837. ] Zhang J, Hu J B, Lian J Y, Fan Z J, Ouyang X J and Ye W H. 2016. Seeing the Forest from Drones:Testing the Potential of Lightweight Drones as a Tool for Long-Term Forest Monitoring. Biological Conservation, 198(2): 60–69. Zhao C S, Zhang C B, Yang S T, Liu C M and Yu Q. 2017. Calculating E-Flow Using UAV and Ground Monitoring. Journal of Hydrology, 552: 351-365. 张宏鸣,王佳佳,韩文霆,李书琴,王红艳,付振宇. 2019. 基于热红外遥感影像的作物冠层温度提取. 农业机械学报,50(4):203-210. [Zhang Hongming, Wang Jiajia, Han Wenxi, Li Shuqin, Wang Hongyan and Fu Zhenyu. 2019. Crop Canopy Temperature Extraction Based on Thermal Infrared Remote Sensing Images. Transactions of the Chinese Society for Agricultural Machinery, 50(4): 203-210. ] Zhou Z M, Yang Y M and Chen B Q 2018. Estimating Spartina Alterniflora Fractional Vegetation Cover and Aboveground Biomass in a Coastal Wetland Using SPOT6 Satellite and UAV Data. Aquatic Botany, 144: 38-45. 周在明,杨燕明,陈本清. 2017. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究. 遥感技术与应用,32(4):714-720. [Zhou Zaiming, Yang Yanming and Chen Benqing. 2017. Research on Vegetation Extraction and Fractional Vegetation Cover of Spartina Alterniflora Using UAV Images. Remote Sensing Technology and Application, 32(4): 714-720. ] 张志明,徐倩,王彬,孙虎,耿宇鹏,田冀. 2017. 无人机遥感技术在景观生态学中的应用. 生态学报,37(12):4029-4036. [ Zhang Zhiming, Xu Qian, Wang Bin, Sun Hu, Yan Yupeng and Tian Ji. Applications of Unmanned Aerial Vehicles Remote Sensing Technology in Landscape Ecology. Acta Ecologica Sinica, 37(12): 4029-4036. ] |
[1] | 柯钦华, 周俏薇, 孙传谆, 李景刚, 李灿, 朱庆莹. 基于生态系统服务权衡的粤港澳大湾区土地利用冲突识别研究[J]. 热带地理, 2023, 43(7): 1426-1439. |
[2] | 曹野, 陈虹, 聂宏璋, 邵正杰, 何畅, 刘云刚, 黄慧明. 行政区划多轮调整下的区域生态系统服务价值评价[J]. 热带地理, 2023, 43(7): 1440-1452. |
[3] | 周汝波, 林媚珍, 吴卓. 生态系统服务供需视角下粤港澳大湾区国土空间生态修复分区研究[J]. 热带地理, 2023, 43(3): 417-428. |
[4] | 刘昊东, 杨俏敏, 臧传富. 2000—2020年广州城市绿地生态系统时空变化及其对地表蒸散的影响[J]. 热带地理, 2023, 43(3): 484-494. |
[5] | 陈奕璋, 周国华, 王华, 崔树强, 毕方泽, 于雪霞. 长株潭城市群经济-社会-生态协同发展水平的演化特征及提升路径[J]. 热带地理, 2023, 43(3): 519-531. |
[6] | 王萌, 孙争争, 何志东, 王智慧, 耿守保, 赵新锋, 杨龙, 孙中宇. 基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演[J]. 热带地理, 2023, 43(11): 2146-2154. |
[7] | 唐承丽, 宋关东, 周国华, 贺艳华. 高新技术产业开发区创新生态系统韧性的内涵及测度——以湖南省为例[J]. 热带地理, 2023, 43(10): 1903-1916. |
[8] | 余楚滢, 龚辉, 曹晶晶, 刘燕君, 刘凯. 基于无人机影像的无瓣海桑单木提取与地上生物量估算[J]. 热带地理, 2023, 43(1): 12-22. |
[9] | 龚粤宁, 杨昌腾, 周光益, 李兆佳, 李超荣, 杨龙, 孙中宇. 基于无人机遥感的南岭山地树冠与树干性状关联研究[J]. 热带地理, 2022, 42(8): 1386-1395. |
[10] | 苏梦园, 吴家龙. 土地综合整治对生态系统服务价值的影响——以广东江门沙仔岛为例[J]. 热带地理, 2021, 41(1): 159-166. |
[11] | 熊鹰, 侯珂伦, 郑偲睿, 张坤, 杨天浩, 赵丹丹, 孙冰, 陈雷. 基于结构方程模型的南方丘陵山地农户福祉与生态系统服务关系——以广东省乐昌市为例[J]. 热带地理, 2020, 40(5): 843-855. |
[12] | 韩然, 叶长盛. 珠江三角洲典型基塘生态系统服务价值演变[J]. 热带地理, 2020, 40(3): 562-574. |
[13] | 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4): 482-491. |
[14] | 刘凯, 龚辉, 曹晶晶, 朱远辉. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501. |
[15] | 朱孟,周忠发,赵馨,黄登红,蒋翼,吴跃,崔亮. 基于无人机遥感的喀斯特高原峡谷区火龙果单株识别提取方法[J]. 热带地理, 2019, 39(4): 502-511. |
|