C2C服装店铺信用等级的规模分布及其影响因素——以江浙沪地区为例
赵键(1994—),男,浙江苍南人,硕士生,主要从事人文地理、城市地理研究,(E-mail)zhaojian721@foxmail.com; |
收稿日期: 2019-02-14
要求修回日期: 2019-07-15
网络出版日期: 2019-11-08
版权
Size Distribution of Credit Rating of C2C Clothing Stores and Its Influencing Factors: A Case Study of Jiangsu, Zhejiang, and Shanghai
Received date: 2019-02-14
Request revised date: 2019-07-15
Online published: 2019-11-08
Copyright
通过搜集与计算得到江浙沪地区各城市淘宝男装、女装、童装及服装店铺整体的信用等级,同时借助集中程度分析、位序—规模法则及回归分析,探讨了该地区淘宝服装店铺信用等级的规模分布特征及其影响因素。结果表明:1)除童装外,江浙沪地区淘宝服装店铺整体及男装、女装店铺,其信用等级的位序—规模分布满足齐夫法则;2)江浙沪地区淘宝服装店铺信用等级的空间分布形态满足对数正态分布模式;3)淘宝服装店铺信用等级的无标度区涵盖了江浙沪地区绝大部分城市,其规模分布结构相对优化;4)淘宝服装店铺的信用等级受信息化水平、物流指数、基础规模实力、文化教育水平、经济发展水平和区位优势度等因素的综合影响,但当地服装产业的工业集中度未能影响淘宝服装店铺的信用等级。
赵键 , 王琛 . C2C服装店铺信用等级的规模分布及其影响因素——以江浙沪地区为例[J]. 热带地理, 2019 , 39(5) : 790 -798 . DOI: 10.13284/j.cnki.rddl.003167
Presently, the e-commerce industry is one of the most globally competitive industries and China has a huge e-commerce market. It is essential to understand e-commerce to develop the service industry. As a comprehensive online shopping platform mainly based on a customer-to-customer (C2C) model, Taobao is a market leader in China’s C2C market, with garment products being the most traded category. Located in the eastern part of mainland China, the Jiangsu, Zhejiang, and Shanghai region consists of 25 cities, covering the main part of the Yangtze River Delta Urban Agglomerations. The comprehensive strength and the extent of e-commerce in the region has a highly demonstrative effect, and the overall scope of its garment and service industry is relatively high. The scale, grade, and transaction status of Taobao stores are expressed through credit rating, which largely reflects the overall development of Taobao stores. In the literature on e-commerce, to improve the new location theory and optimize the pattern of e-commerce, it is vital to further consider the overall development of e-commerce stores and study the spatial distribution rules with store credit rating as the objective. The present study investigates the city-level size distribution of Taobao C2C clothing stores’ credit rating and its determinants in Jiangsu, Zhejiang, and Shanghai based on the data gathered and measured from online individual Taobao stores. Quantitative methods such as concentration analysis, rank-size rule, and regression analysis were adopted to obtain the following findings. 1) According to the ln-ln graph, due to the production, market characteristics, and consumption patterns of children’s clothing, the credit rating’s rank-size distribution of stores focusing on men’s and women’s clothing obeys the Zipf law, but that of stores focusing on children’s clothing does not. The credit rating’s rank-size distribution of all the surveyed stores also obeys the Zipf law. The government should boost children’s clothing industry and provide the necessary funds and technical support to enhance the balance of the stores’ credit rating. 2) Since the Zipf parameter is less than 1, the rank-size distribution pattern of the credit rating of Taobao clothing stores in this area follows a log normal distribution, which implies that the credit rating of high-order cities is not prominent enough, the number of middle-order cities is large, and the overall scale distribution is relatively balanced. However, the overall credit rating of Taobao clothing stores in this area is distributed in a weak spatial concentration. Therefore, the government should encourage communication and learning of improving credit rating of e-commerce stores. 3) The nonscaling ranges of the credit rating of Taobao clothing stores include most of the cities in Jiangsu, Zhejiang, and Shanghai, which reveals a relatively optimized pattern in terms of the size distribution structure in this area. 4) The credit rating of Taobao clothing stores is affected by factors such as the degree of informatization, logistics, comprehensive strength, and education, as well as economic level and locational advantage. However, the industrial concentration of the local clothing industry has not affected the credit rating of Taobao clothing stores.
Key words: C2C e-commerce; clothing store; credit rating; size distribution; Jiangsu; Zhejiang; and Shanghai
表1 信用等级Tab.1 Credit rating table |
店铺等级 | 最低分值 | 最高分值 | 量化中值 |
---|---|---|---|
1心 | 4 | 10 | 7.0 |
2心 | 11 | 40 | 25.5 |
3心 | 41 | 90 | 65.5 |
4心 | 91 | 150 | 120.5 |
5心 | 151 | 250 | 200.5 |
1钻石 | 251 | 500 | 375.5 |
2钻石 | 501 | 1 000 | 750.5 |
3钻石 | 1 001 | 2 000 | 1 500.5 |
4钻石 | 2 001 | 5 000 | 3 500.5 |
5钻石 | 5 001 | 10 000 | 7 500.5 |
1皇冠 | 10 001 | 20 000 | 15 000.5 |
2皇冠 | 20 001 | 50 000 | 35 000.5 |
3皇冠 | 50 001 | 100 000 | 7 5000.5 |
4皇冠 | 100 001 | 200 000 | 150 000.5 |
5皇冠 | 200 001 | 500 000 | 350 000.5 |
1金冠 | 500 001 | 1 000 000 | 750 000.5 |
2金冠 | 1 000 001 | 2 000 000 | 1 500 000.5 |
3金冠 | 2 000 001 | 5 000 000 | 3 500 000.5 |
4金冠 | 5 000 001 | 10 000 000 | 7 500 000.5 |
5金冠 | 10 000 001 | 20 000 000 | 15 000 000.5 |
表2 金华淘宝童装金冠店数量情况Tab.2 The amount of Taobao children’s golden clothing stores in Jinhua city |
店铺类别 | 店铺数量/家 | 占童装同类店铺数量的比例/% |
---|---|---|
1金冠 | 51 | 21.43 |
2金冠 | 39 | 34.82 |
3金冠 | 18 | 26.47 |
4金冠 | 6 | 46.15 |
5金冠 | 12 | 63.16 |
表3 江浙沪地区淘宝服装店铺信用等级的地理集中度指数Tab.3 The geographic concentration index of Taobao clothing stores’ credit rating in Jiangsu, Zhejiang, and Shanghai |
店铺类别 | 地理集中度指数 |
---|---|
男装 | 23.39 |
女装 | 26.45 |
童装 | 26.04 |
服装综合 | 24.21 |
表4 江浙沪地区淘宝服装店铺信用等级位序-规模分布的无标度区范围及齐夫参数Tab.4 The non-scaling range and zipf parameter of the rank-size distribution of Taobao clothing stores’ credit rating in Jiangsu, Zhejiang, and Shanghai |
店铺 类别 | 无标度 区间 | 拟合方程 | 齐夫 参数 | 结构 容量 | 首位城市信用 等级理论值 | 判定 系数 |
---|---|---|---|---|---|---|
男装 | K1~K23 | y=-0.643 1x+11.282 | 0.643 1 | 11.282 0 | 79 379.863 0 | 0.926 9 |
女装 | K1~K22 | y=-0.770 2x+11.207 | 0.770 2 | 11.207 0 | 73 644.150 8 | 0.987 1 |
童装 | K1~K23 | y=-0.734 7x+11.613 | 0.734 7 | 11.613 0 | 110 525.329 5 | 0.894 8 |
服装综合 | K1~K23 | y=-0.661 1x+11.288 | 0.661 1 | 11.288 0 | 79 857.573 8 | 0.943 4 |
表5 信用等级影响因素分析Tab.5 The analysis of influencing factors of credit rating |
自变量Xi | 回归系数β | 相关系数ρ | t | P值 |
---|---|---|---|---|
X1 | 14.446 | 0.203 | 0.996 | 0.330 |
X2 | 4.299 | 0.679 | 4.433 | <0.001 |
X3 | 16.720 | 0.740 | 5.278 | <0.001 |
X4 | 625.196 | 0.656 | 4.168 | <0.001 |
X5 | 10.974 | 0.685 | 4.511 | <0.001 |
X6 | 0.810 | 0.529 | 2.992 | 0.007 |
X7 | 18 839.342 | 0.494 | 2.725 | 0.012 |
1 |
|
2 |
陈迪 . 2019. 电子商务发展推动现代服务业进步的实证分析. 商业经济研究,( 8):77-79.
[
|
3 |
程开明, 庄燕杰 . 2012. 城市体系位序-规模特征的空间计量分析——以中部地区地级以上城市为例. 地理科学, 32(8):905-912.
[
|
4 |
|
5 |
丁志伟, 周凯月, 康江江, 王发曾, 张改素 . 2016. 中国中部C2C店铺服务质量的空间分异及其影响因素——以淘宝网5类店铺为例. 地理研究, 35(6):1074-1094.
[
|
6 |
董国芳, 张晓芳 . 2017. 我国电子商铺空间分布的影响因素——基于淘宝网电子商铺的研究. 中国流通经济, 31(1):107-113.
[
|
7 |
浩飞龙, 关皓明, 王士君 . 2016. 中国城市电子商务发展水平空间分布特征及影响因素. 经济地理, 36(2):1-10.
[
|
8 |
洪琼, 何刚 . 2008. C2C电子商务网站信用评价模型的分析与研究. 中国管理信息化, 11(11):96-98.
[
|
9 |
刘晓阳, 丁志伟, 黄晓东, 王敏, 王发曾 . 2018. 中国电子商务发展水平空间分布特征及其影响因素——基于1915个县(市)的电子商务发展指数. 经济地理, 38(11):11-21.
[
|
10 |
|
11 |
陆立军, 郑小碧 . 2011. 基于共同演化的专业市场与产业集群互动机理研究:理论与实证. 中国软科学,( 6):117-129.
[
|
12 |
|
13 |
谈明洪, 吕昌河 . 2003. 以建成区面积表征的中国城市规模分布. 地理学报, 58(2):285-293.
[
|
14 |
|
15 |
王通, 刘春玲, 马晓倩, 张书理, 刘琳 . 2015. 河北省A级旅游景区时空分布特征分析. 水土保持研究, 22(5):223-233.
[
|
16 |
王贤文, 徐申萌 . 2011. 中国C2C淘宝网络店铺的地理分布. 地理科学进展, 30(12):1564-1569.
[
|
17 |
王颖, 张婧, 李诚固, 张雪娜 . 2011. 东北地区城市规模分布演变及其空间特征. 经济地理, 31(1):55-59.
[
|
18 |
杨国良, 张捷, 刘波, 李敏, 万全友 . 2007. 旅游流流量位序—规模分布变化及其机理——以四川省为例. 地理研究, 26(4):662-672.
[
|
19 |
杨韵 . 2010. C2C交易中的动态信用评价模型. 情报科学, 28(4):563-566.
[
|
20 |
叶浩, 庄大昌 . 2017. 城市体系规模结构研究的新方法——位序累积规模模型. 地理科学, 37(6):825-832.
[
|
21 |
俞金国, 王丽华, 连显淼 . 2010. 电子商铺空间分布规律及其影响因素探究——来自淘宝网的实证. 地域研究与开发, 29(6):34-39.
[
|
22 |
余金艳, 刘卫东, 王亮 . 2013. 基于时间距离的C2C电子商务虚拟商圈分析——以位于北京的淘宝网化妆品零售为例. 地理学报, 68(10):1380-1388.
[
|
23 |
|
24 |
张敏, 张翔, 申峻霞 . 2015. 网络消费空间的性质与生产——以淘宝网原创女装店为例. 地理科学, 35(8):960-968.
[
|
25 |
赵媛, 牛海玲, 杨足膺 . 2010. 我国石油资源流流量位序-规模分布特征变化. 地理研究, 29(12):2121-2131.
[
|
26 |
钟海东, 张少中, 华灵玲, 乜瑛 . 2014. 中国C2C电子商务卖家空间分布模式. 经济地理, 34(4):91-96.
[
|
27 |
周章伟, 张虹鸥, 陈伟莲 . 2011. C2C电子商务模式下的网络店铺区域分布特征. 热带地理, 31(1):65-70.
[
|
/
〈 |
|
〉 |