中国人口老龄化城乡倒置现象的时空演变特征及其驱动机制
张伟(1982―),男,四川邻水人,副教授,博士,研究方向为城市生态与区域发展,(E-mail)zwei1997@swu.edu.cn。 |
收稿日期: 2020-07-15
修回日期: 2021-04-13
网络出版日期: 2021-09-22
基金资助
2018年重庆市社会科学规划项目(2018PY57)
中央高校基本科研业务费专项资金资助(SWU2009435)
教育部人文社会科学研究一般项目(21XJC790010)
Spatial-Temporal Evolution Characteristics and Its Driving Mechanism of Urban-Rural Inversion of Population Aging in China
Received date: 2020-07-15
Revised date: 2021-04-13
Online published: 2021-09-22
人口老龄化城乡倒置现象是中国全面建成小康社会中面临的严峻挑战。文章利用GIS空间聚类、多元逐步回归等模型,在省域尺度上分析中国人口老龄化城乡倒置现象的时空演变特征及驱动机制。结果表明:1)时序演化方面,随着中国人口老龄化水平不断提高,其城乡倒置的现象也日趋显著。2)空间格局演化方面,1995—2018年,城乡倒置现象的空间集聚强度总体呈“低—高—低”的倒U型变化趋势。其首先出现在东部沿海地区,随后逐渐向中西部扩张,最终演化成为全国性的普遍现象。3)驱动机制方面,人口老龄化城乡倒置现象背后存在着复杂多维、非线性的交互作用机制。其中,人口和经济因子是该现象的主要驱动因子。对于经济欠发达、人口流出较为严重、农村老龄化水平较高的西部省份,其农村地区“又老又穷”的现象已经成为其乡村振兴、精准扶贫等战略实施过程中的关键挑战。
张伟 , 蒲春蓉 , 黎芳 , 范紫琳 . 中国人口老龄化城乡倒置现象的时空演变特征及其驱动机制[J]. 热带地理, 2021 , 41(5) : 928 -942 . DOI: 10.13284/j.cnki.rddl.003379
The world's population is growing older, with people over the age of 65 being the fastest-growing age group. In China, population aging significantly affects the building of a moderately prosperous society, while the emergence of the urban-rural inversion phenomenon for population aging increases the difficulty of this challenge. To provide further scientific evidence for the optimal allocation of elderly care resources and the welfare improvement of the elderly population, this study analyzed the spatiotemporal evolution characteristics and driving mechanism of the urban-rural inversion phenomenon for population aging in China at the provincial scale. To this end, it used GIS spatial clustering and multiple stepwise regression models. The results indicated that first, along with the continuous increase in population aging, the urban-rural inversion phenomenon for population aging is becoming evident in China. Before 2000, the aging rate of the urban population was higher than that of the rural population in China. In 2018, the percentages of people over the age of 65 in the total population for urban and rural areas were 10.65% and 13.84%, respectively. Hence, the urban-rural inversion phenomenon for population aging is indeed very obvious. Second, generally speaking, the spatial concentration intensity of the urban-rural inversion phenomenon for population aging presented a "low-high-low" inverted U-shaped variation tendency from 1995 to 2018. The urban-rural inversion phenomenon first appeared in the eastern coastal area. It then gradually expanded to the central and western regions, and eventually evolved into a universal phenomenon nationwide. Additionally, this phenomenon has an obvious characteristic of regional differentiation. The level of urban-rural inversion is high in the eastern coastal area, while it is relatively low in the northeast region. The eastern coastal area is the most economically developed region in China, and it can provide more jobs with higher income to laborers than other regions. Consequently, a large number of young laborers from other regions flocked to cities in the eastern coastal areas to find a better job, which greatly reduced the aging rates of these cities and triggered the urban-rural inversion phenomenon for population aging. In contrast, the economic development of Northeast China has been relatively slow since 2000. It is difficult for the cities of Northeast China to attract immigrants and retain the local young population, which leads to a continuous increase in the aging rate of its urban population. Third, there is a complex, multi-dimensional, and non-linear interaction mechanism behind the urban-rural inversion phenomenon for population aging in China. Population and economic factors are the major driving factors of this phenomenon. The imbalance of social and economic development has formed a geographical difference between regions as well as between urban and rural areas, triggered mass migration movements, affected the demographic structure of urban and rural areas, and led to the urban-rural inversion phenomenon for population aging in China. For western provinces with underdeveloped economies, severe population outflows, and higher levels of rural aging, the phenomenon of "old and poor" in rural areas has become a serious challenge for the successful implementation of rural revitalization and targeted poverty reduction strategies. Further, it has become the key step for building a society that is moderately well-off, with regard to all aspects, in China.
表1 基于全国排序的人口老龄化城乡倒置度演化类型划分Table 1 Evolution types of urban-rural inversion phenomenon of population aging based on national ranking |
演化类型 | 省(市) | 排名 | |||||
---|---|---|---|---|---|---|---|
1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 2018年 | ||
排名 持续 上升型 | 重庆市 | 26 | 22 | 6 | 2 | 1 | 1 |
福建省 | 30 | 12 | 4 | 5 | 6 | 6 | |
上海市 | 31 | 13 | 16 | 14 | 12 | 10 | |
浙江省 | 22 | 1 | 1 | 1 | 2 | 3 | |
四川省 | 27 | 16 | 11 | 6 | 4 | 8 | |
排名 持续 降低型 | 海南省 | 2 | 5 | 9 | 12 | 20 | 24 |
青海省 | 8 | 26 | 24 | 28 | 27 | 30 | |
新疆维吾尔自治区 | 9 | 24 | 30 | 31 | 31 | 31 | |
河北省 | 7 | 8 | 18 | 20 | 18 | 21 | |
云南省 | 13 | 19 | 20 | 25 | 23 | 28 | |
广西壮族自治区 | 5 | 10 | 8 | 9 | 10 | 17 | |
排名 波动 上升型 | 内蒙古自治区 | 16 | 17 | 12 | 23 | 16 | 5 |
吉林省 | 25 | 29 | 29 | 29 | 29 | 18 | |
湖南省 | 21 | 7 | 5 | 10 | 9 | 9 | |
湖北省 | 15 | 15 | 14 | 11 | 7 | 11 | |
贵州省 | 24 | 21 | 19 | 13 | 17 | 14 | |
辽宁省 | 28 | 27 | 27 | 26 | 28 | 23 | |
安徽省 | 17 | 14 | 7 | 8 | 15 | 13 | |
排名 波动 降低型 | 西藏自治区 | 1 | 6 | 25 | 16 | 26 | 12 |
山西省 | 11 | 11 | 15 | 15 | 11 | 15 | |
宁夏回族自治区 | 10 | 28 | 26 | 27 | 24 | 22 | |
江西省 | 18 | 18 | 13 | 21 | 22 | 26 | |
黑龙江省 | 23 | 31 | 31 | 30 | 30 | 27 | |
广东省 | 4 | 2 | 3 | 4 | 8 | 7 | |
甘肃省 | 12 | 23 | 22 | 19 | 19 | 19 | |
北京市 | 19 | 25 | 23 | 22 | 25 | 25 | |
排名 基本 平稳型 | 天津市 | 29 | 30 | 28 | 24 | 21 | 29 |
陕西省 | 20 | 20 | 21 | 18 | 13 | 20 | |
山东省 | 6 | 3 | 10 | 7 | 5 | 4 | |
江苏省 | 3 | 4 | 2 | 3 | 3 | 2 | |
河南省 | 14 | 9 | 17 | 17 | 14 | 16 |
表2 人口老龄化城乡倒置现象驱动机制分析中所使用的指标Table 2 Selected indicators for driving mechanism analysis forurban-rural inversion phenomenon of population aging |
一级指标 | 编号 | 二级指标 | 单位 |
---|---|---|---|
人口自然 变动 | A1 | 人口出生率 | ‰ |
A 2 | 人口死亡率 | ‰ | |
A 3 | 人口自然增长率 | ‰ | |
人口机械 变动 | A 4 | 流动人口总量 | 万人 |
A 5 | 迁入人口占比(城镇) | % | |
家庭 结构 | A 6 | 平均家庭户规模(农村) | 人/户 |
A 7 | 平均家庭户规模(城乡差) | 人/户 | |
A 8 | 一人户占家庭户户数的比例(农村) | % | |
A 9 | 一人户占家庭户户数的比例(城乡差) | % | |
自然禀赋 条件 | B 1 | 平均海拔 | m |
B 2 | 植被净第一性生产力 | g/(m2•a) | |
经济发展 水平 | C 1 | 人均地区生产总值 | 元/人 |
C 2 | 城镇化率 | % | |
C 3 | 居民人均可支配收入(城镇) | 元 | |
C 4 | 居民人均可支配收入(农村) | 元 | |
C 5 | 居民人均可支配收入(城乡差) | 元 | |
社会服务 水平 | D 1 | 社区服务机构覆盖率 | % |
D 2 | 城乡居民社会养老保险实际领取待遇人数占比 | % | |
D 3 | 每万人医疗机构床位数(城乡差) | 张 | |
文化教育 水平 | E 1 | 文盲人口占≥15岁人口的比重(城镇) | % |
E 2 | 文盲人口占≥15岁人口的比重(农村) | % | |
E 3 | 文盲人口占≥15岁人口的比重(城乡差) | % |
表3 人口老龄化城乡倒置现象的因子探测结果Table 3 Result of factor detector for urban-rural inversion phenomenon |
排序 | 编号 | q值 | 排序 | 编号 | q值 |
---|---|---|---|---|---|
1 | A 8 | 0.696 6 | 12 | C 3 | 0.258 7 |
2 | C 2 | 0.542 4 | 13 | A 2 | 0.255 5 |
3 | A 4 | 0.510 8 | 14 | B 1 | 0.251 5 |
4 | A 6 | 0.482 5 | 15 | D 2 | 0.248 3 |
5 | C 1 | 0.426 1 | 16 | D 3 | 0.246 0 |
6 | A 7 | 0.417 0 | 17 | E 2 | 0.239 0 |
7 | E 3 | 0.393 8 | 18 | C 4 | 0.227 8 |
8 | D 1 | 0.366 7 | 19 | E 1 | 0.225 7 |
9 | A 9 | 0.339 5 | 20 | A 5 | 0.193 5 |
10 | C 5 | 0.307 6 | 21 | A 3 | 0.176 4 |
11 | B 2 | 0.289 0 | 22 | A 1 | 0.154 7 |
表4 中国人口老龄化城乡倒置现象影响因素的交互探测结果Table 4 Result of interaction detector between two influencing factors for urban-rural inversion phenomenon of population aging in China |
编号 | 二级指标(简写) | A 1 | A 2 | A 4 | A 6 | A 7 | A 8 | C 1 | C 2 |
---|---|---|---|---|---|---|---|---|---|
A 1 | 出生率 | 0.154 7 | 0.807 5 | 0.620 0 | 0.725 3 | 0.725 7 | 0.809 0 | 0.615 0 | 0.852 0 |
A 2 | 死亡率 | 0.807 5 | 0.255 5 | 0.722 0 | 0.867 3 | 0.630 9 | 0.846 5 | 0.704 0 | 0.724 5 |
A 3 | 自然增长率 | 0.502 9 | 0.855 3 | 0.690 4 | 0.635 9 | 0.600 3 | 0.890 4 | 0.801 7 | 0.810 2 |
A 4 | 流动人口总量 | 0.620 0 | 0.722 0 | 0.510 8 | 0.806 4 | 0.873 3 | 0.896 3 | 0.808 8 | 0.707 0 |
A 5 | 城镇迁入人口占比 | 0.745 7 | 0.868 2 | 0.763 9 | 0.754 9 | 0.855 5 | 0.839 4 | 0.732 7 | 0.834 5 |
A 6 | 农村平均家庭户规模 | 0.725 3 | 0.867 3 | 0.806 4 | 0.482 5 | 0.745 0 | 0.776 5 | 0.773 6 | 0.749 0 |
A 7 | 平均家庭户规模(城乡差) | 0.725 7 | 0.630 9 | 0.873 3 | 0.745 0 | 0.417 0 | 0.777 8 | 0.898 5 | 0.883 0 |
A 8 | 一人户占比(乡村) | 0.809 0 | 0.846 5 | 0.896 3 | 0.776 5 | 0.777 8 | 0.696 6 | 0.893 4 | 0.924 9 |
A 9 | 一人户占比(城乡差) | 0.800 1 | 0.632 1 | 0.917 6 | 0.781 6 | 0.493 9 | 0.812 6 | 0.745 4 | 0.926 6 |
B 1 | 平均海拔 | 0.557 9 | 0.677 2 | 0.739 2 | 0.617 7 | 0.648 6 | 0.807 4 | 0.576 6 | 0.732 9 |
B 2 | 植被净第一性生产力 | 0.617 2 | 0.817 2 | 0.726 3 | 0.806 1 | 0.737 3 | 0.814 9 | 0.815 9 | 0.784 5 |
C 1 | 人均地区生产总值 | 0.615 0 | 0.704 0 | 0.808 8 | 0.773 6 | 0.898 5 | 0.893 4 | 0.426 1 | 0.722 6 |
C 2 | 城镇化率 | 0.852 0 | 0.724 5 | 0.707 0 | 0.749 0 | 0.883 0 | 0.924 9 | 0.722 6 | 0.542 4 |
C 3 | 城镇人均收入 | 0.576 3 | 0.869 2 | 0.679 7 | 0.888 2 | 0.915 1 | 0.927 6 | 0.510 3 | 0.779 3 |
C 4 | 农村人均收入 | 0.655 2 | 0.544 1 | 0.643 2 | 0.806 5 | 0.770 6 | 0.907 0 | 0.705 8 | 0.634 3 |
C 5 | 居民人均可支配收入 | 0.491 9 | 0.836 8 | 0.642 9 | 0.795 8 | 0.861 8 | 0.870 5 | 0.636 3 | 0.740 7 |
D 1 | 社区服务机构覆盖率 | 0.598 1 | 0.568 7 | 0.644 7 | 0.885 4 | 0.707 4 | 0.899 6 | 0.687 8 | 0.744 3 |
D 2 | 社保领取人数占比 | 0.578 7 | 0.792 3 | 0.689 7 | 0.769 8 | 0.670 3 | 0.820 0 | 0.710 0 | 0.837 3 |
D 3 | 万人医疗机构床位数(城乡差) | 0.583 7 | 0.584 5 | 0.888 0 | 0.773 9 | 0.604 9 | 0.804 2 | 0.806 8 | 0.850 2 |
E 1 | 城镇文盲人口占比 | 0.448 4 | 0.777 4 | 0.720 0 | 0.781 5 | 0.525 7 | 0.847 1 | 0.783 7 | 0.805 8 |
E 2 | 农村文盲人口占比 | 0.563 2 | 0.689 7 | 0.630 4 | 0.783 0 | 0.540 4 | 0.862 3 | 0.578 5 | 0.869 3 |
E 3 | 文盲人口占比(城乡差) | 0.490 1 | 0.807 3 | 0.717 7 | 0.764 1 | 0.676 2 | 0.889 3 | 0.754 6 | 0.764 6 |
均值 | 0.614 5 | 0.721 7 | 0.729 0 | 0.762 3 | 0.707 2 | 0.846 1 | 0.713 1 | 0.782 7 | |
最大值 | 0.852 0 | 0.869 2 | 0.917 6 | 0.888 2 | 0.915 1 | 0.927 6 | 0.898 5 | 0.926 6 | |
最小值 | 0.154 7 | 0.255 5 | 0.510 8 | 0.482 5 | 0.417 0 | 0.696 6 | 0.426 1 | 0.542 4 |
|
Blekesaune A and Haugen M S. 2018. Ageing in Norwegian Rural and Urban Communities. European Countryside, 10(2): 232-246.
|
Bloom D E, Canning D and Lubet A. 2015. Global Population Aging: Facts, Challenges, Solutions & Perspectives. Daedalus, 144(2): 80-92.
|
United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Ten Key Findings. (2019-07-15) [2021-08-24]. https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf.
|
Wang Wuyi, Zhang Li, Li Hairong, Li Ribang, Yang Linsheng and Liao Yongfeng. 2005. Spatial-Temporal Changes and Trends of Ageing in China. Chinese Geographical Science, 15(3): 200-205.
|
陈明华,郝国彩. 2014. 中国人口老龄化地区差异分解及影响因素研究. 中国人口·资源与环境,24(4):136-141. [Chen Minghua and Hao Guocai. 2014. Research on Regional Difference Decomposition and Influence Factors of Population Aging in China. China Polulation. Resources and Environment, 24(4): 136-141. ]
|
戴伟,张霄艳,孙晓伟. 2015. 大健康理念下的“医养结合”模式. 中国社会保障,(10):82-83. [Dai Wei, Zhang Xiaoyan and Sun Xiaowei. 2015. The "Integration of Medical and Nursing" Model in the Context of Big Health. China Social Security, (10): 82-83. ]
|
杜吉国,侯建明. 2012. 中国人口老龄化城乡倒置的影响及解决对策. 理论探讨,(3):97-100. [Du Jiguo and Hou Jianming. 2012. Influence and Solution of Urban-Rural Inversion of Population Aging in China. Theoretical Investigation, (3): 97-100. ]
|
杜鹏,王武林. 2010. 论人口老龄化程度城乡差异的转变. 人口研究,34(2):3-10. [Du Peng and Wang Wulin. 2010. The Difference of Urban and Rural Ageing and Its Transition. Population Research, 34(2): 3-10. ]
|
高文轩. 2019. 政策、二元经济结构与城乡居民收入差距研究. 现代商业,(11):172-174. [Gao Wenxuan. 2019. Policy, Dual Economic Structure and Income Gap between Urban and Rural Residents. Modern Business, (11): 172-174. ]
|
国务院人口普查办公室,国家统计局人口和就业统计司. 2012. 中国2010年人口普查资料. 北京:中国统计出版社. [Population Census Office under the State Council and Department of Population and Employment Statistics, National Bureau of Statistics. 2012. Tabulation on the Population Census of the People's Republic of China by County. Beijing: China Statistics Press. ]
|
李辉,王瑛洁. 2012. 中国人口老龄化城乡倒置现象研究. 吉林大学社会科学学报,52(1):154-158. [Li Hui and Wang Yingjie. 2012. Study on the Phenomenon of Urban-Rural Inversion of Population Ageing in China. Jilin University Journal Social Sciences Edition, 52(1): 154-158. ]
|
李日邦,王五一,谭见安,何洋,杨林生. 1999. 中国人口老龄化发展的阶段、趋势和区域差异. 地理研究,18(2):2-10. [Li Ribang, Wang Wuyi, Tan Jian'an, He Yang and Yang Linshen. 1999. The Development Stages and Trend of Population Ageing and Its Regional Differences in China. Geographical Research, 18(2): 2-10. ]
|
李少星,王先芝,纪小乐,张烨. 2019. 乡镇尺度上的山东省人口老龄化空间格局演变与影响因素研究. 地理科学进展,38(4):567-576. [Li Shaoxing, Wang Xianzhi, Ji Xiaole and Zhang Ye. 2019. Spatial Change and Influencing Factors of Population Aging in Shandong Province at the Township Scale. Progress in Geography, 38(4): 567-576. ]
|
林宝. 2018. 人口老龄化城乡倒置:普遍性与阶段性. 人口研究,42(3):38-50. [Lin Bao. 2018. The Inversion Pattern of Urban and Rural Ageing: Universality and Periodicity. Population Research, 42(3): 38-50. ]
|
刘华军,何礼伟,杨骞. 2014. 中国人口老龄化的空间非均衡及分布动态演进:1989-2011. 人口研究,38(2):71-82. [Liu Huajun, He Liwei and Yang Qian. 2014. Spatial Inequality and Distributional Dynamics of Population Ageing in China, 1989-2011. Population Research, 38(2): 71-82. ]
|
刘维奇. 2014. 中国人口老龄化城乡倒置现状及其与城市化的相互影响. 农业现代化研究,35(2):134-139. [Liu Weiqi. 2014. Status of Urban and Rural Aging Population Inversion and Its Interaction with Urbanization. Research of Agricultural Modernization, 35(2): 134-139. ]
|
马红旗,陈仲常. 2012. 省际流动人口、地区人口负担及基于人口负担的均等化转移支付方案. 经济科学,(4):91-104. [Ma Hongqi and Chen Zhongchang. 2012. Inter-Provincial Floating Population, Regional Population Burden and Equalized Transfer Payment Scheme Based on Population Burden. Economic Science, (4): 91-104. ]
|
童玉芬,王静文,邱杨,沈亚男. 2014. 城镇化进程对中国城乡人口老龄化的影响机制分析. 广西社会科学,(12):157-161. [Tong Yufen, Wang Jingwen, Qiu Yang and Shen Yanan. 2014. Analysis of the Influence Mechanism of Urbanization Process on the Urban and Rural Population Aging in China. Guangxi Social Sciences, (12): 157-161. ]
|
王桂新,干一慧. 2017. 中国的人口老龄化与区域经济增长. 中国人口科学,(3):30-42. [Wang Guixin and Gan Yihui. 2017. Population Aging and Regional Economic Growth in China. Chinese Journal of Population Science, (3): 30-42. ]
|
王桂新. 2015. 高度重视农村人口过快老龄化问题. 探索与争鸣,(12):28-30. [Wang Guixin. 2015. Attaching Great Importance to the Problem of Excessively Rapid Aging of the Rural Population. Exploration and Free Views, (12): 28-30. ]
|
王劲峰,徐成东. 2017. 地理探测器:原理与展望. 地理学报,72(1):116-134. [Wang Jingfeng and Xu Chengdong. 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134. ]
|
吴连霞,赵媛,吴开亚,郝丽莎,王玉娟. 2018. 中国人口老龄化区域差异及驱动机制研究. 地理科学,38(6):877-884. [Wu Lianxia, Zhao Yuan, Wu Kaiya, Hao Lisha and Wang Yujuan. 2018. Regional Variations and Driving Mechanism of Aging Population in China. Scientia Geographica Sinica, 38(6): 877-884. ]
|
吴媛媛,宋玉祥. 2020. 中国人口老龄化空间格局演变及其驱动因素. 地理科学,40(5):768-775. [Wu Yuanyuan and Song Yuxiang. 2020. The Evolution of China's Population Aging Spatial Pattern and Its Driving Factors. Scientia Geographica Sinica, 40(5): 768-775. ]
|
许昕,赵媛,夏四友,武荣伟,张新林. 2020. 中国分县城乡人口老龄化时空差异与机理. 经济地理,40(4):164-174. [Xu Xin, Zhao Yuan, Xia Siyou, Wu Rongwei and Zhang Xinlin. 2020. Spatial and Temporal Characteristics and Mechanism of Urban and Rural Population Ageing in China. Economic Geography, 40(4): 164-174. ]
|
闫庆武,卞正富. 2015. 基于GIS的中国省际人口迁移流的空间特征分析. 人文地理,30(3):125-129. [Yan Qingwu and Bian Zhengfu. 2015. Analysis on Spatial Characteristics of China's Interprovincial Migration Flows Based on GIS. Human Geography, 30(3): 125-129. ]
|
杨振,雷军. 2019. 中国地级及以上城市城镇化发展的时空格局及影响因素. 中国科学院大学学报,36(1):82-92. [Yang Zhen and Lei Jun. Spatio-Temporal Pattern and Influencing Factors of Urbanization Development of Cities at Prefecture Level and Above in China. Journal of University of Chinese Academy of Sciences, 36(1): 82-92. ]
|
湛东升,张文忠,余建辉,孟斌,党云晓. 2015. 基于地理探测器的北京市居民宜居满意度影响机理. 地理科学进展,34(8):966-975. [Zhan Dongsheng, Zhang Wenzhong, Yu Jianhui, Meng Bin and Dang Yunxiao. 2015. Analysis of Influencing Mechanism of Residents' Livability Satisfaction in Beijing Using Geographical Detector. Progress in Geography, 34(8): 966-975. ]
|
张平平,万巧琴,大塚眞理子. 2013. 日本老年护理领域中延续护理的发展及现状. 中国护理管理,13(10):42-44. [Zhang Pingping, Wan Qiaoqin, and Dazhong Zhenlizi. 2013. Development and Status of Continuing Care in the Field of Elderly Care in Japan. Chinese Nursing Management, 13(10): 42-44. ]
|
张伟,蒋锦刚,朱玉碧. 2015. 基于空间统计特征的城市热环境时空演化. 应用生态学报,26(6):1840-1846. [Zhang Wei, Jiang Jingang and Zhu Yubi. 2015. Spatial-Temporal Evolution of Urban Thermal Environment Based on Spatial Statistical Features. Chinese Journal of Applied Ecology, 26(6): 1840-1846. ]
|
赵东霞,韩增林,王利. 2017. 中国老年人口分布的集疏格局及其形成机制. 地理学报,72(10):1762-1775. [Zhao Dongxia, Han Zenglin and Wang Li. 2017. The Spatial Pattern of Aging Population Distribution and Its Generating Mechanism in China. Acta Geographica Sinica, 72(10): 1762-1775. ]
|
中国发展研究基金会. 2020. 中国发展报告2020:中国人口老龄化的发展趋势和政策. 北京:中国发展出版社. [China Development Research Foundation. 2020. China Development Report 2020: Development Trends and Policies of Population Aging in China. Beijing: China Development Press. ]
|
中华人民共和国统计局. 2019. 中国人口和就业统计年鉴-2019. 北京:中国统计出版社. [National Bureau of Statistics of China. 2019. China Population & Employment Statistical Yearbook-2019. Beijing: China Statistics Press. ]
|
中华人民共和国统计局. 2020. 中国统计年鉴-2020. 北京:中国统计出版社. [National Bureau of Statistics of China. 2020. China Statistical Yearbook-2020. Beijing: China Statistics Press. ]
|
钟睿. 2019. 中国人口老龄化城乡倒置的空间转移和规划应对——基于人口流动的视角. 城市发展研究,26(2):24-30. [Zhong Rui. 2019. Spatial Transfer and Planning Strategies of Urban-Rural Aging Population Reversed in China: from the Prospective of Population Migration. Urban Development Studies, 26(2): 24-30. ]
|
周榕,庄汝龙,黄晨熹. 2019. 中国人口老龄化格局演变与形成机制. 地理学报,74(10):2163-2177. [Zhou Rong, Zhuang Rulong and Huang Chenxi. 2019. Pattern Evolution and Formative Mechanism of Aging in China. Acta Geographica Sinica, 74(10): 2163-2177. ]
|
邹湘江,吴丹. 2013. 人口流动对农村人口老龄化的影响研究——基于“五普”和“六普”数据分析. 人口学刊,35(4):70-79. [Zou Xiangjiang and Wu Dan. 2013. Floating Population Impact on Rural Aging. Population Journal, 35(4): 70-79. ]
|
左丽媛,高江波. 2020. 基于地理探测器的喀斯特植被NPP定量归因. 生态环境学报,29(4):686-694. [Zuo Liyuan and Gao Jiangbo. 2020. Quantitative Attribution Analysis of NPP in Karst Peak Cluster Depression Based on Geographical Detector. Ecology and Environmental Sciences, 29(4): 686-694. ]
|
/
〈 |
|
〉 |