粤港澳大湾区水路客运网络特征
宋旭妍(2000―),女,广东韶关人,研究方向为旅游地理,(E-mail)sxy_1205@163.com; |
收稿日期: 2021-01-26
修回日期: 2021-08-20
网络出版日期: 2022-01-24
基金资助
国家自然科学基金(41801124)
广州市哲学社会科学发展“十三五”规划2020年度一般课题(2020GZYB25)
The Waterage Passenger Transportation Network in the Guangdong-Hong Kong-Macao Greater Bay Area
Received date: 2021-01-26
Revised date: 2021-08-20
Online published: 2022-01-24
以粤港澳大湾区水路客运班线为数据来源,运用复杂网络分析方法,研究水路客运网络的基本特征,评估其小世界特性与无标度特征,分析各节点的重要性,测试其鲁棒性与脆弱性,结果发现:1)大湾区水路客运网络基本健全,节点之间能够自由流动,但网络的层级单一,可达性较低的节点占据多数;2)大湾区水路客运网络具有部分小世界网络特性和无标度特性,节点分布呈现马太效应;3)深圳蛇口港在复杂网络中的综合重要性最为突出,比较重要的节点还有香港中港码头、香港国际机场、珠海九州港、澳门外港;4)大湾区南部的水路客运网络相比北部发达,东部比西部发达,空间发展不均衡;5)大湾区水路客运网络具有鲁棒性,生存能力较强,但网络发育不够完善,稳定性较差,难以经受蓄意攻击。整体上,大湾区水路客运网络还有较大的优化提升空间,应加大核心节点保障能力,增强边缘节点的连通性,提升大湾区北部的水路客运能力。
宋旭妍 , 彭甜甜 , 张高军 . 粤港澳大湾区水路客运网络特征[J]. 热带地理, 2022 : 1 -9 . DOI: 10.13284/j.cnki.rddl.专5.宋旭妍-2021-0050粤港澳大湾区水路客运网络(排版稿)
Taking the waterage passenger transportation lines in the Guangdong-Hong Kong-Macao Great Bay Area (GBA) as the data source to study its complex network characteristics can enrich the traffic geography research based on waterage passenger transportation and serve the construction of the GBA. The findings are as follows. Firstly, the waterage passenger transportation network (WPTN) in the GBA is basically sound with nodes flowing freely, but the network lacks in hierarchy as nodes with low accessibility occupy the majority and is overally dispersed with low-level modularization. The complex network can be divided into two communities, of which the nodes with the highest degree are China Ferry Terminal (CFT) in Hong Kong, Hong Kong International Airport (HKIA) and Shekou Port (SP) in Shenzhen, and the nodes most closely connected are HK Macao Ferry Terminal (HMFT) and Macao Outer Harbour Ferry Terminal (MOHFT). Secondly, the WPTN in the Great Bay Area has characteristics of some small world network and scale-free, of which the node distribution presents the "Matthew Effect". The average path length of the network is small, and the clustering coefficient is also small. CFT, HKIA and SP are the head nodes of the WPTN, which have the most growing feature and priority connection feature in the network. On the other side, it also shows that the internal differences of the complex network are large and the overall connectivity quality needs to be improved. Thirdly, SP is the most important node in the complex network , as its various indicators are all at the forefront. The positions of CFT, HKIA, Jiuzhou Port in Zhuhai and MOHFT in the complex network are also very important, and they have outstanding advantages in a single indicator respectively. Fourthly, from the perspective of spatial structure, the waterage passenger transportation capacity in the south of the GBA is more developed than that in the north, and that in the east is more developed than that in the west. And finally, the WPTN in the GBA has robustness and strong survivability, but the network development is not perfect enough with greater vulnerability, as the network connectivity depends too much on the core nodes and the stability is poor. After attacking the core nodes of the network, half of the remaining nodes will be greatly affected, and even some nodes become isolated ones. After calculation, there are only 31.34% of the complex network variables remained after event 3. In order to optimize the WPTN in the Great Bay Area, the suggestions are list below. First, for various core nodes, such as CFT, HKIA, SP and MOHFT, as they play important roles in the network, it is necessary to strengthen support to ensure their service capacity. Second, for edge nodes, such as Lianhuashan Port and Nansha Port in Guangzhou, Shunde Port and Gaoming Port in Foshan, we can make full use of the attraction and radiation of the city itself, fully investigate the market demand and develop new passenger transportation lines, especially increase the connections with non-core nodes and improve their position in the network, so as to enhance the stability and external attack tolerance of the whole network. And third, from the perspective of spatial pattern, it is necessary to focus on improving the waterage passenger transportation capacity in the north of the GBA and form a northern hub, in order to make the whole network more balanced. For future studies, we can focus on the evolution process and impact of the WPTN and the comprehensive research of waterage and land passenger transportation network as well.
表1 2018年港口间的客运班次Table 1 Passenger service between ports in 2018 |
港口 | 客运班次 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | B1 | B2 | C1 | C2 | D1 | D2 | E1 | E2 | E3 | E4 | E5 | F1 | F2 | G1 | H1 | I1 | |
A1 | — | — | — | — | — | — | — | 240 | 1 243 | — | — | 2 706 | — | — | — | 20 | 1 730 | 235 | — | 2 747 | 129 |
A2 | — | — | — | — | — | 41 181 | — | — | — | 2 713 | — | 2 705 | — | — | — | — | — | — | — | — | — |
A3 | — | — | — | — | — | 3 532 | — | 120 | 1 242 | 5 239 | 1 445 | 1 546 | — | — | — | — | — | — | 1 805 | 1 569 | — |
A4 | — | — | — | — | — | 3 030 | 87 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
A5 | — | — | — | — | — | 6 348 | 1 411 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
B1 | — | 40 340 | 3 995 | 2 947 | 7 316 | — | — | — | — | 3 353 | 1 367 | — | — | — | — | — | — | — | — | — | — |
B2 | — | — | — | 84 | 915 | — | — | — | — | 4 191 | 1 366 | — | — | — | — | — | — | — | 730 | — | — |
C1 | 239 | — | 119 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
C2 | 1 201 | — | 1 201 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
D1 | — | 3 085 | 4 937 | — | — | 3353 | 4192 | — | — | — | — | 9 855 | 730 | 365 | 730 | — | — | — | — | — | — |
D2 | — | — | 1 470 | — | — | 1 366 | 1 366 | — | — | — | — | 2 920 | — | — | — | — | — | — | — | 2 555 | — |
E1 | 2 568 | 2 567 | 1 467 | — | — | — | — | — | — | 9 855 | 2 920 | — | — | — | — | — | — | — | — | — | — |
E2 | — | — | — | — | — | — | — | — | — | 730 | — | — | — | — | — | — | — | — | — | — | — |
E3 | — | — | — | — | — | — | — | — | — | 365 | — | — | — | — | — | — | — | — | — | — | — |
E4 | — | — | — | — | — | — | — | — | — | 730 | — | — | — | — | — | — | — | — | — | — | — |
E5 | 20 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
F1 | 1 712 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
F2 | 236 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
G1 | — | — | 1 811 | — | — | — | 730 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
H1 | 2 263 | — | 1 939 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
I1 | 131 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
|
表2 粤港澳大湾区水路客运网络特征Table 2 Characteristics of waterway passenger transport network in Guangdong-Hong Kong-Macao Greater Bay Area |
港口 | 中介中心度 | 接近中心度 | PageRanks |
---|---|---|---|
A1香港中港码头 | 0.39 | 0.48 | 0.08 |
A2香港港澳码头 | 0.01 | 0.44 | 0.05 |
A3香港国际机场 | 0.27 | 0.56 | 0.06 |
A4香港屯门码头 | 0 | 0.34 | 0.04 |
A5香港九龙码头 | 0 | 0.34 | 0.04 |
B1澳门外港 | 0.14 | 0.47 | 0.06 |
B2澳门氹仔 | 0.08 | 0.44 | 0.05 |
C1广州南沙港 | 0.02 | 0.44 | 0.04 |
C2广州莲花山港 | 0.02 | 0.44 | 0.04 |
D1深圳蛇口港 | 0.34 | 0.56 | 0.07 |
D2深圳宝安国际机场 | 0.06 | 0.48 | 0.04 |
E1珠海九洲港 | 0.25 | 0.54 | 0.05 |
E2珠海东澳岛 | 0 | 0.36 | 0.04 |
E3珠海桂山岛 | 0 | 0.36 | 0.04 |
E4珠海外伶仃岛 | 0 | 0.36 | 0.04 |
E5珠海斗门港 | 0 | 0.328 | 0.04 |
F1佛山顺德港 | 0 | 0.33 | 0.04 |
F2佛山高明港 | 0 | 0.33 | 0.04 |
G1东莞虎门码头 | 0.01 | 0.39 | 0.04 |
H1东莞中山港 | 0.04 | 0.44 | 0.05 |
I1江门港 | 0 | 0.33 | 0.04 |
表3 过滤中心节点后网络的节点数与边数及其可视率和直径Table 3 Number of Nodes and Edges, Visibility and Diameter of Network after Filtering Center Nodes |
蓄意攻击事件 | 节点数/个 | 边数/条 | 节点可视率/% | 边数可视率/% | 直径/次 |
---|---|---|---|---|---|
事件1 | 20 | 51 | 95.24 | 76.12 | 5 |
事件2 | 19 | 35 | 90.48 | 52.24 | 3 |
事件3 | 18 | 21 | 85.71 | 31.34 | 4 |
宋旭妍:第一作者,撰写论文,分析数据,修订完善论文;
彭甜甜:第二作者,收集与分析数据,撰写论文;
张高军:通信作者,提出研究问题,设计研究框架,指导研究过程,修改论文等。
Albert Réka, Jeong Hawoong and Barabasi Albert-László. 2000. Error and Attack Tolerance of Complex Networks. Nature, 406(6794): 378-382.
|
Baird Alfred J. 1999. A Comparative Study of the Ferry Industry in Japan and the UK. Transport Reviews, 19(1): 33-55.
|
Barabási A L and Albert R. 1999. Emergence of Scaling in Random Networks. Science, 286(5439): 509-512.
|
Blondel Vincent D, Guillaume Jean-Loup, Lambiotte Renaud and Lefebvre Etienne. 2008. Fast Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory and Experiment, (10): 100.
|
党亚茹,周莹莹,王莉亚,李雯静.2009.基于复杂网络的国际航空客运网络结构分析.中国民航大学学报,27(6):41-44.[Dang Yaru, Zhou Yingying, Wang Liya and Li Wenjing. 2009. International Air Transport Network Structure Analysis Based on Complex Networks. Journal of Civil Aviation University of China, 27(6): 41-44.]
|
杜超,王姣娥,莫辉辉.2016.中国集装箱航运网络空间格局及复杂性研究.长江流域资源与环境,25(2):190-198.[Du Chao, Wang Jiao’e and Mo Huihui. 2016. Spatial Pattern Analysis of China Container Shipping Network on Complex Theory. Resources and Environment in the Yangtze Basin, 25(2): 190-198.]
|
高峰,党亚茹.2009.世界航空客运网络的节点度分布特征.科学学与科学技术管理,30(7):75-79,185.[Gao Feng and Dang Yaru. 2009. Analysis on Distribution Property of an International Air Transport Network. Science of Science and Management of S. & T., 30(7): 75-79, 185.]
|
高自友,赵小梅,黄海军,毛保华.2006.复杂网络理论与城市交通系统复杂性问题的相关研究.交通运输系统工程与信息,(3):41-47.[Gao Ziyou, Zhao Xiaomei, Huang Haijun and Mao Baohua. 2006. Research on Problems Related to Complex Networks and Urban Traffic Systems. Journal of Transportation Systems Engineering and Information Technology, (3): 41-47.]
|
郭建科,何瑶,侯雅洁.2018.中国沿海集装箱港口航运网络空间联系及区域差异.地理科学进展,37(11):1499-1509.[Guo Jianke, He Yao and Hou Yajie. 2018. Spatial Connection and Regional Difference of the Costal Container Port Shipping Network of China. Progress in Geography, 37(11): 1499-1509.]
|
吉阿兵,朱道立.2006.网络外部性下的港口竞争策略设计.系统工程理论与实践,(7):105-111.[Ji A'bing and Zhu Daoli. 2006. The Port Competitive Strategies with Network Externality. System Engineering Theory and Practice, (7): 105-111.]
|
蹇令香,李东兵,赵诗晨.2016.我国沿海港口复杂网络演化特征.经济地理,36(12):96-103.[Jian Lingxiang, Li Dongbing and Zhao Shichen. 2016. China's Coastal Ports Complex Network Evolution. Economic Geography, 36(12): 96-103.]
|
焦敬娟,王姣娥,金凤君,王涵.2016.高速铁路对城市网络结构的影响研究——基于铁路客运班列分析.地理学报,71(2):265-280.[Jiao Jingjuan, Wang Jiao’e, Jin Fengjun and Wang Han. 2016. Impact of High-Speed Rail on Inter-City Network Based on the Passenger Train Network in China, 2003-2013. Acta Geographica Sinica, 71(2): 265-280.]
|
Lai M F and Lo Hong K L. 2004. Ferry Service Network Design: Optimal Fleet Size, Routing, and Scheduling. Transportation Research Part A: Policy and Practice, 38(4): 305-328. DOI:10.1016/j.tra.2003.08.003.
|
Lo Hong K, An Kun and Lin Weihua. 2013. Ferry Service Network Design Under Demand Uncertainty. Transportation Research Part E, 59: 48-70.
|
刘涛,陈忠,陈晓荣.2005.复杂网络理论及其应用研究概述.系统工程,(6):1-7.[Liu Tao, Chen Zhong and Chen Xiaorong. 2005. A Brief Review of Complex Networks and Its Application. Systems Engineering, (6): 1-7.]
|
刘勇.2017. 网络数据可视化与分析利器:Gephi中文教程.北京:电子工业出版社.[Liu Yong. 2017. Web Data Visualization and Analysis Tools: Gephi Chinese Course. Beijing: Publishing House of Electronics Industry.]
|
Maiorov N and Fetisov V. 2019. Forecasting of the Route Network of Ferry and Cruise Lines Based on Simulation and Intelligent Transport Systems. Transport Problems. 14(2): 111-121.
|
覃成林,柴庆元.2018.交通网络建设与粤港澳大湾区一体化发展.中国软科学,(7):71-79.[Qin Chenglin and Chai Qingyuan. 2018. Transport Network Construction and Integrated Development of Guangdong-Hong Kong-Macao Greater Bay Area. China Soft Science, (7): 71-79.]
|
任晓龙,吕琳媛.2014.网络重要节点排序方法综述.科学通报,59(13):1175-1197.[Ren Xiaolong and Lv Linyuan. 2014. Review of Ranking Nodes in Complex Networks. Chinese Scince Bulletin, 59(13): 1175-1197.]
|
宋炳良.2000.上海港口功能的空间定位与国际航运中心建设.上海经济研究,(4):57-61.[Song Bingliang. 2000. Spatial Positioning of Shanghai Port Functions and Construction of International Shipping Center. Shanghai Journal of Economics, (4): 57-61.]
|
Watts D J and Strogatz S H. 1998. Collective Dynamics of ‘Small-World’ Networks. Nature, 393(6684): 440-442.
|
汪小帆,李翔,陈关荣.2006.复杂网络理论及其应用.北京:清华大学出版社,2-3.[Wang Xiaofan, Li Xiang and Chen Guanrong. 2006. Complex Network Theory and Its Application. Beijing: Tsinghua University Publishing House, 2-3.]
|
王姣娥,金凤君.2005.中国铁路客运网络组织与空间服务系统优化.地理学报,(3):371-380.[Wang Jiao’e and Jin Fengjun. 2005. Railway Network Organization and Spacial Service System Optimization in China. Acta Geographica Sinica, (3): 371-380.]
|
王姣娥,杜德林,金凤君.2019.多元交通流视角下的空间级联系统比较与地理空间约束.地理学报,74(12):2482-2494.[Wang Jiao’e, Du Delin and Jin Fengjun. 2019. Comparison of Spatial Structure and Linkage Systems and Geographic Constraints: A Perspective of Multiple Traffic Flows. Acta Geographica Sinica, 74(12): 2482-2494.]
|
王静远,李超,熊璋,单志广.2014.以数据为中心的智慧城市研究综述.计算机研究与发展,51(2):239-259.[Wang Jingyuan, Li Chao, Xiong Zhang and Shan Zhiguang. 2014. Survey of Data-Centric Smart City. Journal of Computer Research and Development, 51(2): 239-259.]
|
张京祥,刘雨平.2008.沿京杭大运河地区的空间发展——以京杭大运河扬州段为例.经济地理,28(1):1-5.[Zhang Jingxiang and Liu Yuping. 2008. Research on the Spatial Development of Areas Along the Beijing-Hangzhou Canal-With the Case Study of Yangzhou Part of Beijing-Hangzhou Canal. Economic Geography, 28(1): 1-5.]
|
孟德友,陆玉麒,李小建,高超,2014. 长江三角洲高速公路网络构建对区域可达性的影响,热带地理,34(5):643-654. [Meng Deyou,Lu Yuqi,Li Xiaojian,Gao Chao 2014. Impact of Expressway Network Construction on the Regional Accessibility in the Yangtze River Delta. Tropical Georaphy, 34(5):643-654.]
|
赵旭,杨赞,靳志宏,计明军.2007.区域集装箱港口网络布局规划优化模型.交通运输工程学报,(3):44-49.[Zhao Xu, Yang Zan, Jin Zhihong and Ji Mingjun. 2007. Optimization Model of Network Distribution Planning on Regional Container Ports. Journal of Traffic and Transport Engineering, (3): 44-49.]
|
周平德. 2002. 珠江三角洲地区一体化交通运输网络发展构想. 热带地理,22(4):299-303. [Zhou Pingde. 2002. A Study on the Development of the Integrated Transporantion Network in the Pearl River Delta Economic Region. Tropical Georaphy, 22(4):299-303.]
|
宗刚,胡蓓蓓,韩建飞.2012.中国沿海港口网络空间结构的复杂性研究.中国软科学,(12):171-178.[Zong Gang, Hu Beibei and Han Jianfei. 2012. Complexity Research on Spacial Structural Charateristics of China's Coastal Port Network. China Soft Science, (12): 171-178.]
|
/
〈 |
|
〉 |