中南半岛植被物候与极端降水的变化特征及关联
朱彤彤(1998—),女,河北沧州人,硕士研究生,研究方向为生态模拟与生态遥感,(E-mail)tongtongz5@163.com; |
收稿日期: 2022-03-30
修回日期: 2022-05-27
网络出版日期: 2023-03-31
基金资助
中国地质大学(武汉)科研启动基金资助项目(162301192642)
中国-东盟海洋生物廊道建设合作项目(144022000000180031)
Variation Characteristics and Correlation between Vegetation Phenology and Extreme Precipitation in Indo-China Peninsula
Received date: 2022-03-30
Revised date: 2022-05-27
Online published: 2023-03-31
利用MCD12Q2数据提取中南半岛的植被物候指标,采用Sen+Mann-Kendall法、灰色关联分析及R/S分析等方法,分析中南半岛地区生长季开始、生长季结束、生长季长度及极端降水指标的时空分布特征及其关联,并预测物候指标的未来变化趋势。结果表明:1)2001—2018年中南半岛生长季开始及结束时间均表现出东部地区早于西部的空间特征,半岛生长季长度多保持在8~9个月左右;除暴雨日数指标,极端降水指标的空间分布特征与年总降水量的空间分布相似,大致呈西高东低;2)生长季始期与生长季末期以提前趋势为主,生长季长度以缩短趋势为主;年尺度降水量与强度无明显变化,但单日最大降水量、极强降水量和暴雨日数指标呈下降趋势,中雨日数、大雨日数和连续有雨日数指标均呈上升趋势,表明中南半岛极强降水事件减少,中等强度极端事件增多,降水事件的持续时间变长;3)各物候指标的主控极端降水指标类型空间分布模式相似且集中,植被物候与区域气候密切相关;4)中南半岛各物候指标未来变化趋势与过去变化趋势相反,且以延后趋势为主。
朱彤彤 , 王绍强 , 李卉 , 李霞 , 刘侦海 , 钱钊晖 , 王小博 , 刘媛媛 , 涂勇凯 . 中南半岛植被物候与极端降水的变化特征及关联[J]. 热带地理, 2023 , 43(3) : 532 -544 . DOI: 10.13284/j.cnki.rddl.003637
The Indo-China Peninsula lies in a tropical monsoon climate zone and is prone to extreme weather events, including droughts and floods. Against the backdrop of global warming, the frequent occurrences of extreme precipitation affect the typical growth and phenology of vegetation. Based on the Sen+Mann-Kendall method and grey correlation analysis, the temporal and spatial characteristics of vegetation phenology and extreme precipitation in the Indo-China Peninsula and their relationships are analyzed. Vegetation phenological indices are extracted from MCD12Q2 and include the start of the growing season (SGS), the end of the growing season (EGS), and the length of the growing season (LGS). Based on the rescaled range (R/S) analysis, the future trends of these three phenological indices are predicted. The results show the following: 1) Spatial and temporal distribution characteristics: From 2001 to 2018, the SGS and EGS in the eastern region occurred earlier than those in the western region, and LGS was related to vegetation type, lasting approximately 3-7 months in agricultural areas and around 8-9 months in other areas. Excluding the number of rainstorm days (R50), the spatial distribution characteristics of extreme precipitation index were similar to that of annual total precipitation (PRCPTOT), which was higher in the west and lower in the east; 2) Trend: The SGS and EGS show an advanced trend, while the LGS shows a shortened trend; PRCPTOT and daily precipitation intensity had no obvious changes, maximum daily precipitation, extremely heavy rainfall, and R50 show a downward trend, while moderate rain days, heavy rain days and continuous wet days show an upward trend; these demonstrate that the Indo-China Peninsula has fewer extremely strong precipitation events, increased moderate intensity extreme events, and longer duration of rainfall events; 3) Correlation: By comparing the grey correlation degree between phenological indices and extreme precipitation indices, the distribution of the main extreme precipitation indices were obtained and found to have similar and concentrated spatial distribution; the spatial characteristic shows that there was a close relation between vegetation phenology and regional climate; the Indo-China Peninsula is divided into three zones from north to south, and the main controlling factors are the absolute index, the relative index, and the persistence index, respectively; 4) Sustainability: Based on the coupling analysis of H index of phenological indices calculated by R/S method and the Sen+Mann-Kendall method, we found that the future trend of phenological indicators was delayed and opposite to the previous trend in most parts of the Indo-China Peninsula. It is necessary to further study the index system and refine extreme precipitation events to distinguish the effects of different events on vegetation phenology.
表1 极端降水指标及定义Table 1 Definition and classification of extreme precipitation index |
指标类型 | 指标名称 | 定义 | 单位 |
---|---|---|---|
强度指数 | 年降水量(PRCPTOT) | ≥1 mm降水日累积量 | mm |
降水强度(SDII) | 年降水量/≥1 mm降水日数 | mm/d | |
1日最大降水量(RX1day) | 日最大降水量 | mm | |
持续指数 | 连续无雨日数(CDD) | 最长连续无降水日数 | d |
连续有雨日数(CWD) | 最长连续降水日数 | d | |
5日最大降水量(RX5day) | 连续5日最大降水量 | mm | |
相对指数 | 强降水量(R95pTOT) | 年内日降水量>95%分位值的降水量之和 | mm |
极强降水量(R99pTOT) | 年内日降水量>99%分位值的降水量之和 | mm | |
绝对指数 | 中雨日数(R10) | 日降水量≥10 mm的天数 | d |
大雨日数(R25) | 日降水量≥25 mm的天数 | d | |
暴雨日数(R50) | 日降水量≥50 mm的天数 | d |
表2 中南半岛地区物候指标的未来变化趋势面积占比 (%)Table 2 Future trend of growing season index in Indo-China Peninsula |
发展趋势 | SGS | EGS | LGS |
---|---|---|---|
反持续性-延后/延长 | 27.77 | 26.49 | 25.74 |
反持续性-提前/缩短 | 31.03 | 34.02 | 35.47 |
未来变化趋势不确定 | 0.09 | 0.02 | 0.03 |
基本无变化 | 16.96 | 16.05 | 15.51 |
持续性-延后/延长 | 12.68 | 11.60 | 10.94 |
持续性-提前/缩短 | 11.47 | 11.82 | 12.32 |
1 https://ladsweb.modaps.eosdis.nasa.gov
2 https://disc.gsfc.nasa.gov
朱彤彤、刘侦海:文献收集、论文撰写与修改;
李卉、涂勇凯:数据采集、数据整理;
王小博、刘媛媛:数据处理、数据分析;
王绍强、李霞、钱钊晖:论文构思、方法设计。
Arjasakusuma S, Kusuma S S, Saringatin S, and Rafif R. 2021. Assessing Land Surface Phenology of The Savanna Ecosystem in Southeast Asia Using Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index from 2002 to 2020. Applied Geomatics, 13(4): 515-525.
|
Badeck F W, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, and Sitch S. 2004. Responses of Spring Phenology to Climate Change. New Phytologist, 162(2): 295-309.
|
Chen A, Chen D, and Azorin-Molina C. 2018. Assessing Reliability of Precipitation Data over the Mekong River Basin: A Comparison of Ground-Based, Satellite, and Reanalysis Datasets. International Journal of Climatology, 38(11): 4314-4334.
|
陈海山,钱满亿,华文剑. 2020. 中南半岛春季植被覆盖变化及其与ENSO的联系. 大气科学学报,43(6):1065-1075.
Chen Haishan, Qian Manyi, and Hua Wenjian. 2020. Vegetation Cover Change in The Indo-China Peninsula in Spring and Its Relation to ENSO. Transactions of Atmospheric Sciences, 43(6): 1065-1075.
|
Clauss K, Ottinger M, Leinenkugel P, and Kuenzer C. 2018. Estimating Rice Production in the Mekong Delta, Vietnam, Utilizing Time Series of Sentinel-1 SAR Data. International Journal of Applied Earth Observation and Geoinformation, 73: 574-585.
|
Cui D Y, Wang C H, and Santisirisomboon J. 2019. Characteristics of Extreme Precipitation over Eastern Asia and Its Possible Connections with Asian Summer Monsoon Activity. International Journal of Climatology, 39(2): 711-723.
|
代武君,金慧颖,张玉红,周志强,刘彤. 2020. 植物物候学研究进展. 生态学报,40(19):6705-6719.
Dai Wujun, Jin Huiying, Zhang Yuhong, Zhou Zhiqiang, and Liu Tong. 2020. Advances in Plant Phenology. Acta Ecologica Sinica, 40(19): 6705-6719.
|
Deng H Y, Yin Y H, Wu S H, and Xu X F. 2019. Contrasting Drought Impacts on The Start of Phenological Growing Season in Northern China during 1982-2015. International Journal of Climatology, 40(7): 3330-3347.
|
Ding Y X, Li Z, and Peng S Z. 2020. Global Analysis of Time-Lag and -Accumulation Effects of Climate on Vegetation Growth. International Journal of Applied Earth Observations and Geoinformation, 92: 102179.
|
董满宇,田相佑,胡木兰,王磊鑫,江源,徐霞. 2020. 1960—2017年太湖流域不同等级降水时空特征. 热带地理,40(6):1063-1074.
Dong Manyu, Tian Xiangyou, Hu Mulan, Wang Leixin, Jiang Yuan, and Xu Xia. 2020. Spatio-Temporal Variation in Precipitation for Different Grades in the Taihu Lake Basin during 1960-2017. Tropical Geography, 40 (6): 1063-1074.
|
Du Q, Liu H Z, Li Y H, Xu L J, and Diloksumpun S. 2019. The Effect of Phenology on the Carbon Exchange Process in Grassland and Maize Cropland Ecosystems across A Semiarid Area of China. Science of The Total Environment,695, 133868.
|
Ezaz G T, Zhang K, Li X, Shalehy M H, Hossain M A, and Liu L X. 2022. Spatiotemporal Changes of Precipitation Extremes in Bangladesh during 1987-2017 and Their Connections with Climate Changes, Climate Oscillations, and Monsoon Dynamics. Global and Planetary Change, 208: 103712.
|
Fay P A, Kaufman D M, Nippert J B, Carlisle J D, and Harper C W. 2008. Changes in Grassland Ecosystem Function Due to Extreme Rainfall Events: Implications for Responses to Climate Change. Global Change Biology, 14(7): 1600-1608.
|
冯磊,杨东,黄悦悦. 2020. 2000—2017年川渝地区植被NDVI特征及其对极端气候的响应. 生态学杂志,39(7):2316-2326.
Feng Lei, Yang Dong, and Huang Yueyue. 2020. Vegetation NDVI Characteristics and Response to Extreme Climate in Sichuan and Chongqing from 2000 to 2017. Chinese Journal of Ecology, 39(7): 2316-2326.
|
付阳,陈辉,张斯琦,杨祎,赵元杰. 2021. 基于群落类型的寒区旱区物候特征及其对气候因子的响应——以2000—2019年柴达木盆地为例. 地理研究,40(1):52-66.
Fu Yang, Chen Hui, Zhang Siqi, Yang Yi, and Zhao Yuanjie. 2021. Phenological Characteristics of Alpine Arid Region Based on Biome Type and Its Responses to Climate Factors: A Case Study of Qaidam Basin from 2000 to 2019. Geographical Research, 40(1): 52-66.
|
Garonna I, de Jong R, and Schaepman M E. 2016. Variability and Evolution of Global Land Surface Phenology over the Past Three Decades (1982-2012). Global Change Biology, 22(4): 1456-1468.
|
Ge F, Zhi X F, Babar Z A, Tang W W, and Chen P. 2016. Interannual Variability of Summer Monsoon Precipitation over The Indochina Peninsula in Association with ENSO. Theoretical and Applied Climatology,128(3/4): 523-531.
|
Ge F, Zhu S P, Peng T, Zhao Y, Sielmann F, Fraedrich K, Zhi X F, Liu X R, Tang W W, and Ji L Y. 2019. Risks of Precipitation Extremes over Southeast Asia: Does 1.5 °C or 2 °C Global Warming Make a Difference?. Environmental Research Letters, 14(4): 044015.
|
Hong Y, Yu S, Zhang H Y, Tao Y, Wu R H, and Deng G R. 2019. The Effect of Snow Depth on Spring Wildfires on the Hulunbuir from 2001–2018 Based on MODIS. Remote Sensing, 11(3): 321.
|
Hong Y, Zhang H Y, Zhao J J, Yu S, Zhang Z X, Guo X Y, Wu R H, and Deng G R. 2020. Effects of Spring and Summer Extreme Climate Events on The Autumn Phenology of Different Vegetation Types of Inner Mongolia, China, from 1982 to 2015. Ecological Indicators, 111: 105974.
|
Huang X L, Zhang T B, Yi G H, He D, Zhou X B, Li J J, Bie X J, and Miao J Q. 2019. Dynamic Changes of NDVI in The Growing Season of The Tibetan Plateau during The Past 17 Years and Its Response to Climate Change. International Journal of Environmental Research and Public Health, 16(18): 3452.
|
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, and Ferreira L G. 2002. Overview of The Radiometric and Biophysical Performance of The MODIS Vegetation Indices. Remote Sensing of Environment, 83(1): 195-213.
|
Huijnen V, Wooster M J, Kaiser J W, Gaveau D L A, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, and Van Weele M. 2016. Fire Carbon Emissions over Maritime Southeast Asia in 2015 Largest since 1997. Scientific Reports, 6: 26886.
|
IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 104.
|
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge& New York: Cambridge University Press, 1535.
|
Jiang R G, Wang Y P, Xie J C, Zhao Y, Li F W, and Wang X J. 2019. Assessment of Extreme Precipitation Events and Their Teleconnections to El Niño Southern Oscillation, a Case Study in the Wei River Basin of China. Atmospheric Research, 218: 372-384.
|
Josh G, Damien S M, and Mark A F. 2019. User Guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product. (2019-01-15) [2022-05-16]. https://lpdaac.usgs.gov/documents/1310/mcd12 q2_v6_user_guide.pdf.
|
Karkauskaite P, Tagesson T, and Fensholt R. 2017. Evaluation of The Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of The Northern Hemisphere Boreal Zone. Remote Sensing, 9(5): 485.
|
Keenan T F, Gray J, Friedl M A, Toomey M, Bohrer G, Hollinger D Y, Munger J W, O'Keefe J, Schmid H P, Wing L S, Yang B, and Richardson A D. 2014. Net Carbon Uptake Has Increased through Warming-Induced Changes in Temperate Forest Phenology. Nature Climate Change, 4(7): 598-604.
|
Lai P Y, Zhang M, Ge Z X, Hao B F, Song Z J, Huang J, Ma M G, Yang H, and Han X J. 2020. Responses of Seasonal Indicators to Extreme Droughts in Southwest China. Remote Sensing, 12(5): 818.
|
Lehmann C E R, Archibald S A, Hoffmann W A, and Bond W J. 2011. Deciphering the Distribution of the Savanna Biome. New Phytologist, 191(1): 197-209.
|
Limsakul A, and Singhruck P. 2016. Long-Term Trends and Variability of Total and Extreme Precipitation in Thailand. Atmospheric Research, 169: 301-317.
|
Liu D, Hu B, Ding Z, and Kaisarb E I. 2020. Method of Group Decision Making with Interval Grey Numbers Based on Grey Correlation and Relative Close Degree. Tehnicki vjesnik - Technical Gazette, 27(5): 1579-1584.
|
刘侦海,王绍强,陈斌. 2021. 2000—2015年中蒙俄经济走廊东段冻土时空变化及植被响应. 地理学报,76(5):1231-1244.
Liu Zhenhai, Wang Shaoqiang, and Chen Bin. 2021. Spatial and Temporal Variations of Frozen Ground and Its Vegetation Response in The Eastern Segment of China-Mongolia-Russia Economic Corridor from 2000 to 2015. Acta Geographica Sinica, 76(5): 1231-1244.
|
Luo X Z, Keenan T F, Fisher J B, Jimenez-Munoz J C, Chen J M, Jiang C Y, Ju W M, Perakalapudi N V, Ryu Y, and Tadic J M. 2018. The Impact of the 2015/2016 El Nino on Global Photosynthesis Using Satellite Remote Sensing. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760): 20170409.
|
Miyan M A. 2015. Droughts in Asian Least Developed Countries: Vulnerability and Sustainability. Weather and Climate Extremes, 7: 8-23.
|
Peng D L, Zhang X Y, Wu C Y, Huang W J, Gonsamo A, Huete A R, Didan K, Tan B, Liu X J, and Zhang B. 2017. Intercomparison and Evaluation of Spring Phenology Products Using National Phenology Network and AmeriFlux Observations in The Contiguous United States. Agricultural and Forest Meteorology, 242: 33-46.
|
任福民,高辉,刘绿柳,宋艳玲,高荣,王遵娅,龚志强,王永光,陈丽娟,李清泉,柯宗建,孙丞虎,贾小龙. 2014. 极端天气气候事件监测与预测研究进展及其应用综述. 气象,40(7):860-874.
Ren Fumin, Gao Hui, Liu Lvliu, Song Yanling, Gao Rong, Wang Zunya, Gong Zhiqiang, Wang Yongguang, Chen Lijuan, Li Qingquan, Ke Zongjian, Sun Chenghu, and Jia Xiaolong. 2014. Research Progresses on Extreme Weather and Climate Events and Their Operational Applications in Climate Monitoring and Prediction. Meteopological Monthly, 40(7): 860-874.
|
Rifai S W, Li S H, and Malhi Y. 2019. Coupling of El Niño Events and Long-Term Warming Leads to Pervasive Climate Extremes in the Terrestrial Tropics. Environmental Research Letters, 14(10): 105002.
|
Roongroj C, and Chiu L S. 2008. Thailand Daily Rainfall and Comparison with TRMM Products. Journal of Hydrometeorology, 9(2): 256-266.
|
Rudiyanto, Budiman M, Ramisah M S, Norhidayah C S, Chusnul A, and Budi I S. 2019. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing, 11(14): 1666.
|
Sa C, Meng F H, Luo M, Li C H, Wang M L, Adiya S, and Bao Y H. 2021. Spatiotemporal Variation in Snow Cover and Its Effects on Grassland Phenology on The Mongolian Plateau. Journal of Arid Land, 13(4): 332-349.
|
Schwartz M D. 2013. Phenology: An Integrative Environmental Science. Dordrecht: Kluwer Academic Publishers, 3-7.
|
Son N T, Chen C F, Chen C R, Sobue S, Chiang S H, Maung T H, and Chang L Y. 2016. Delineating and Predicting Changes in Rice Cropping Systems Using Multi-Temporal MODIS Data in Myanmar. Journal of Spatial Science, 62(2): 235-259.
|
Suepa T, Qi J G, Lawawirojwong S, and Messina J P. 2016. Understanding Spatio-Temporal Variation of Vegetation Phenology and Rainfall Seasonality in The Monsoon Southeast Asia. Environmental Research, 147: 621-629.
|
Vintrou E, Bégué A, Baron C, Saad A, Lo Seen D, and Traoré S. 2014. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa. Remote Sensing, 6(2): 1367-1389.
|
王晓利,侯西勇. 2019. 1982—2014年中国沿海地区归一化植被指数(NDVI)变化及其对极端气候的响应. 地理研究,38(4):807-821.
Wang Xiaoli, and Hou Xiyong. 2019. Variation of Normalized Difference Vegetation Index and Its Response to Extreme Climate in Coastal China during 1982-2014. Geographical Research, 38(4): 807-821.
|
Wu W, Sun Y, Xiao K, and Xin Q C. 2021. Development of a Global Annual Land Surface Phenology Dataset for 1982–2018 from the AVHRR Data by Implementing Multiple Phenology Retrieving Methods. International Journal of Applied Earth Observation and Geoinformation, 103: 102487.
|
Xiao W W, Sun Z G, Wang Q X, and Yang Y H. 2013. Evaluating MODIS Phenology Product for Rotating Croplands through Ground Observations. Journal of Applied Remote Sensing, 7(1): 609-618.
|
Ye W T, Van Dijk A I J M, Huete A, and Yebra M. 2021. Global Trends in Vegetation Seasonality in The GIMMS NDVI3g and Their Robustness. International Journal of Applied Earth Observation and Geoinformation, 94: 102238.
|
Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, and Huete A. 2003. Monitoring Vegetation Phenology Using MODIS. Remote Sensing of Environment, 84(3): 471-475.
|
张彬,朱建军,刘华民,潘庆民. 2014. 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报,38(9):1008-1018.
Zhang Bin, Zhu Jianjun, Liu Huamin, and Pan Qingmin. 2014. Effects of Extreme Rainfall and Drought Events on Grassland Ecosystems. Chinese Journal of Plant Ecology, 38(9): 1008-1018.
|
Zhang L, Song W, and Song W. 2020. Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia. International Journal of Environmental Research and Public Health, 17(17): 6153.
|
张晓萱,崔耀平,刘素洁,李楠,付一鸣. 2019. 自然植被物候遥感提取精度评估. 生态学杂志,38(5):1589-1599.
Zhang Xiaoxuan, Cui Yaoping, Liu Sujie, Li Nan, and Fu Yiming. 2019. Evaluation of the Accuracy of Phenology Extraction Methods for Natural Vegetation Based on Remote Sensing. Chinese Journal of Ecology, 38(5): 1589-1599.
|
Zhang Y, Zhu Z C, Liu Z, Zeng Z Z, Ciais P, Huang M T, Liu Y W, and Piao S L. 2016. Seasonal and Interannual Changes in Vegetation Activity of Tropical Forests in Southeast Asia. Agricultural and Forest Meteorology, 224: 1-10.
|
/
〈 |
|
〉 |