海平面上升情景下沿海城市极端雨潮复合洪涝危险性评估——以海口市为例
吴国凤(2000—),女,苗族,贵州铜仁人,硕士研究生,主要从事沿海城市复合洪涝灾害风险评估研究,(E-mail)tjnuwgf@ 163.com; |
收稿日期: 2023-10-24
修回日期: 2024-01-04
网络出版日期: 2024-06-13
基金资助
国家自然科学基金项目:深度不确定影响下沿海地区复合极端洪水风险形成机制与风险适应研究(42371088)
Risk Assessment of Extreme Rainfall and Storm Surge Compound Flooding in Coastal Cities under Sea Level Rise Scenarios: A Case Study of Haikou City
Received date: 2023-10-24
Revised date: 2024-01-04
Online published: 2024-06-13
以海口市为例,利用1960—2017年的66场台风资料,包括台风日降雨和风暴潮的极值水位,建立复合洪涝组合情景。基于多个情景,对海口市在海平面上升背景下极端雨潮复合洪涝灾害的潜在风险进行深入研究。结果表明:1)在台风事件中,风暴潮为复合洪涝灾害的关键致灾因子,受灾最严重的地区主要位于南渡江入海口和北部滨海地区;2)在最大雨潮复合洪涝组合情景中,海口市受淹面积估计为148 km2,相较于最小雨潮复合洪涝组合情景增加了约15倍,淹没区域中一半以上的区域积水深度超过1 m;3)在极端雨潮复合情景下,海甸岛、新埠岛及江东新区一带的滨海地区受到海平面上升影响最显著。根据RCP8.5情景预测,到2100年,海口市受极端复合洪涝灾害的影响区域预计达到约203 km2。
吴国凤 , 刘青 , 许瀚卿 , 魏旭辰 , 王军 . 海平面上升情景下沿海城市极端雨潮复合洪涝危险性评估——以海口市为例[J]. 热带地理, 2024 , 44(6) : 1025 -1035 . DOI: 10.13284/j.cnki.rddl.20230854
In the context of climate change, the escalating frequency of extreme weather phenomena has exacerbated the severity of compound floods in the southeastern coastal regions of China. Rising sea levels significantly contribute to the inundation of low-lying coastal urban areas. The quantitative assessment of compound flood risk offers scientific support for disaster prevention and reduction in coastal cities and for coastal management initiatives. Using Haikou City as a case study, the daily precipitation and maximum storm surge tide data from 66 typhoons that affected Haikou between 1960 and 2017 were utilized to construct compound flood combination scenarios. Based on the quantitative method of D-Flow FM (Delft3D-FLOW Flexible Mesh) numerical simulation, the potential risks of extreme rainfall and storm surge compound flood disasters under sea level rise scenarios were thoroughly investigated by integrating various scenarios. The findings revealed the following: 1) Storm surge was the primary factor contributing to compound flooding during typhoons, with the estuary of the Nandu River and the northern coast being the most affected. 2) In the scenario of maximum rainfall and storm surge combination, the inundation area of Haikou is about 148 km2, which is approximately 15 times larger than the minimum rainfall and storm surge combination scenario. Moreover, in more than half of the inundated areas, the water depth exceeds 1 meter. 3) Under extreme rainfall and storm surge compound scenarios, the areas encompassing Haidian Island, Xinbu Island, and Jiangdong New Area were significantly affected by sea level rise. By 2100, the total flooding area is projected to reach about 203 km2 under the RCP8.5 scenario. Sea level rise significantly amplifies urban flood risks, implying that coastal cities are poised to encounter heightened threats and manage future challenges. Through comprehensive comparisons of multiple rainfall and storm surge compound flooding scenarios under sea level rise, the temporal and spatial characteristics of the compound flooding risk were systematically evaluated. The results provide an important scientific basis for sustainable regional development, effective management, and prevention.
表 1 基于历史台风构建的雨潮复合情景矩阵Table 1 Rainfall and storm surge compound scenarios matrix constructed based on historical typhoons |
情景 | 潮位(S max) | 潮位(S min) |
---|---|---|
降雨量(R max) | R max_S max | R max_S min |
降雨量(R min) | R min_S max | R min_S min |
图6 海口市雨潮复合洪涝组合情景洪涝淹没Fig.6 Flood inundation based on historical typhoon rainfall-waterlogging-storm surge assumption |
表 2 海口市雨潮复合洪涝组合情景模拟统计结果Table 2 Simulation statistical results of historical typhoon rainfall-waterlogging-storm surge interaction scenarios |
淹没深度/m | 淹没面积/km2 | |||
---|---|---|---|---|
R min_S min | R min_S max | R max_S min | R max_S max | |
合计 | 9.04 | 109.03 | 54.10 | 147.74 |
0~0.5 | 2.76 | 13.03 | 47.70 | 51.51 |
>0.5~1.0 | 2.84 | 19.94 | 2.95 | 19.97 |
>1.0~2.0 | 3.44 | 41.45 | 3.45 | 41.59 |
>2.0~3.0 | 0 | 23.76 | 0 | 23.81 |
>3.0 | 0 | 10.85 | 0 | 10.86 |
表 3 RCP4.5和RCP8.5情景下未来洪水淹没信息 (km2)Table 3 Future flood inundation information under RCP4.5 and RCP8.5 scenarios |
淹没深度/m | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|
2030年 | 2050年 | 2100年 | 2050年 | 2100年 | ||
合计 | 177.49 | 182.92 | 196.35 | 183.82 | 203.43 | |
0~0.5 | 77.75 | 74.52 | 69.61 | 73.68 | 66.99 | |
> 0.5~1.0 | 18.73 | 18.25 | 12.85 | 18.27 | 12.08 | |
> 1.0~2.0 | 41.47 | 43.23 | 42.51 | 43.52 | 39.63 | |
> 2.0~3.0 | 26.89 | 30.95 | 43.63 | 31.71 | 47.98 | |
>3.0 | 12.65 | 15.97 | 27.75 | 16.64 | 36.75 |
1 http://data.cma.cn/
2 https://www.gebco.net/
吴国凤:主要负责构建综合洪水评价框架,耦合模型数值模拟,处理数据和绘图,分析数据,撰写及修订全文;
刘 青:主要负责收集、处理基础数据,模型构建和率定,研究思路指导,参与论文撰写;
许瀚卿:模型构建技术指导,文章撰写指导,提供修改建议;
魏旭辰:论文校对、检查及内容补充;
王 军:确定论文选题和研究思路,把控论文的核心思想和总体质量。
Amoura R and Dahmani K. 2022. Visualization of the Spatial Extent of Flooding Expected in the Coastal Srea of Algiers Due to Sea Level Rise. Horizon 2030/2100. Ocean & Coastal Management, 219: 106041.
|
Blake E S and Zelinsky D A. 2018. National Hurricane Center: National Hurricane Center Tropical Cyclone Report: Hurricane Harvey (AL092017). (2018-05-09) [2023-10-23]. https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.
|
岑国平,沈晋,范荣生. 城市设计暴雨雨型研究. 1998. 水科学进展,(1):42-47.
Cen Guoping, Shen Jin, and Fan Rongsheng. Study on Rainstorm Patterns in Urban Design. 1998. Advances in Water Science, (1): 42-47.
|
陈崇贤,方言,刘京一. 2023. 海平面上升叠加风暴潮风险下城市景观系统脆弱性评估:以广州为例. 华中农业大学学报,42(4):53‐63.
Chen Chongxian, Fang Yan, and Liu Jingyi. 2023. Vulnerability Assessment of Urban Landscape Systems under Risk of Sea Level Rise Superimposed with Storm Surge: A Case Study of Guangzhou. Journal of Huazhong Agricultural University, 42(4): 53-63.
|
陈雨菲,林孝松,犹伊然,李宏伟. 2021. 海南岛台风灾害综合危险评价. 科学技术与工程,21(18):7467-7475.
Chen Yufei, Lin Xiaosong, You Yiran, and Li Hongwei. 2021. Comprehensive Risk Assessment of Typhoon Disaster in Hainan Island. Science Technology and Engineering, 21(18): 7467-7475.
|
方佳毅,史培军. 2019. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望. 地理科学进展,38(5):625-636.
Fang Jiayi and Shi Peijun. 2019. A Review of Coastal Flood Risk Research under Global Climate Change. Progress in Geography, 38(5): 625-636.
|
方佳毅,殷杰,石先武,方建,杜士强,刘敏. 2021. 沿海地区复合洪水危险性研究进展. 气候变化研究进展,17(3):317-328.
Fang Jiayi, Yin Jie, Shi Xianwu, Fang Jian, Du Shiqiang, and Liu Min. 2021. A Review of Compound Flood Hazard Research in Coastal Areas. Climate Change Research, 17(3): 317-328.
|
Fang J Y, Wahl T, Fang J, Sun X, Kong F, and Liu M. 2021. Compound Flood Potential from Storm Surge and Heavy Precipitation in Coastal China: Dependence, Drivers, and Impacts. Hydrology and Earth System Sciences, 25(8): 4403-4416.
|
方建,陶凯,牟莎,方佳毅,杜士强. 2023. 复合极端事件及其危险性评估研究进展. 地理科学进展,42(3):587-601.
Fang Jian, Tao Kai, Mu Sha, Fang Jiayi, and Du Shiqiang. 2023. Progress of Research on Compound Extreme Event and Hazard Assessment. Progress in Geography, 42(3): 587-601.
|
Fang J, Lincke D, Brown S, Nicholls R J, Wolff C, Merkens J L, Hinkel J, Vafeidis A T, Shi P, and Liu M. 2020. Coastal Flood Risks in China through the 21st Century– An Application of DIVA. Science of The Total Environment, 704: 135311.
|
Gao L, Mei J, Li J, Zhang W, and Lai C. 2023. Effect of Intense Rainfall and High Riverine Water Level on Compound Flood Hazards in a River-Valley City: A Case Study of Yingde, China. Journal of Hydrology, 625: 130044.
|
Garner A J, Mann M E, Emanuel K A, Kopp R E, Lin N, Alley R B, Horton B P, DeConto R M, Donnelly J P, and Pollard D. 2017. Impact of Climate Change on New York City's Coastal Flood Hazard: Increasing Flood Heights from the Preindustrial to 2300 CE. Proceedings of the National Academy of Sciences, 114 (45): 11861-11866.
|
Gilja G, Ocvirk E, and Kuspilić N. 2018. Joint Probability Analysis of Flood Hazard at River Confluences using Bivariate Copulas. Građevinar (Zagreb), 70 (4): 267-275.
|
Gori A, Lin N, and Smith J. 2020a. Assessing Compound Flooding from Landfalling Tropical Cyclones on the North Carolina Coast. Water Resources Research, 56 (4): e2019WR026788.
|
Gori A, Lin N, and Xi D. 2020b. Tropical Cyclone Compound Flood Hazard Assessment: From Investigating Drivers to Quantifying Extreme Water Levels. Earth's Future, 8 (12): e2020EF001660.
|
Gori A and Lin N. 2022. Projecting Compound Flood Hazard Under Climate Change with Physical Models and Joint Probability Methods. Earth's Future, 10 (12): e2022EF003097.
|
国家海洋局. 2016. 2015年中国海平面公报. (2016-03-28)[2023-10-23]. https://www.nmdis.org.cn/hygb/zghpmgb/2015nzghp mgb/. [State Oceanic Administration. 2016. China Sea Level Bulletin 2015. (2016-03-28) [2023-10-23]. https://www.nmdis.org.cn/hygb/zghpmgb/2015nzghpmgb/. ]
|
郭仁韵,刘小平,许晓聪. 2023. 洪灾风险规避下的珠三角未来城市扩张模拟和灾损减缓评估. 热带地理,43(6):1083-1097.
Guo Renyun, Liu Xiaoping, and Xu Xiaocong. 2023. Future Urban Expansion Simulation and Flood Mitigation Assessment in the Pearl River Delta under Flood Risk Avoidance. Tropical Geography, 43(6): 1083-1097.
|
Hadipour V, Vafaie F, and Kerle N. 2020. An Indicator-Based Approach to Assess Social Vulnerability of Coastal Areas to Sea-Level Rise and Flooding: A Case Study of Bandar Abbas City, Iran. Ocean & Coastal Management, 188: 105077.
|
Kopp R E, Horton R M, Little C M, Mitrovica J X, Oppenheimer M, Rasmussen D J, Strauss B H, and Tebaldi C. 2014. Probabilistic 21st and 22nd Century Sea‐Level Projections at a Global Network of Tide‐Gauge Sites. Earth's Future, 2 (8): 383-406.
|
Lee J. 2021. The Economic Aftermath of Hurricanes Harvey and Irma: The Role of Federal Aid. International Journal of Disaster Risk Reduction, 61: 102301.
|
Lin N, Marsooli R, and Colle B A. 2019. Storm Surge Return Levels Induced by Mid-to-Late-Twenty-First-Century Extratropical Cyclones in the Northeastern United States. Climatic Change, 154 (1/2): 143-158.
|
刘青,王军,许瀚卿,牛怡莹,魏旭辰. 2022. 台风影响下沿海城市风雨复合灾害风险研究——以海口市为例. 灾害学,37(4):129-134.
Liu Qing, Wang Jun, Xu Hanqing, Niu Yiying, and Wei Xuchen. 2022. Research on the Risk of Joint Wind and Rain Hazards in Coastal Cities During Typhoons: A Case Study of Haikou City. Journal of Catastrophology, 37(4): 129-134.
|
Liu Q, Xu H, and Wang J. 2022. Assessing Tropical Cyclone Compound Flood Risk using Hydrodynamic Modelling: A Case Study in Haikou City, China. Natural Hazards and Earth System Sciences, 22(2): 665-675.
|
Marsooli R and Lin N. 2020. Impacts of Climate Change on Hurricane Flood Hazards in Jamaica Bay, New York. Climatic Change, 163 (4): 2153-2171.
|
National Oceanic and Atmospheric Administration. 2018. Service Assessment: August/September 2017 Hurricane Harvey. (2018-06-18) [2023-10-23].https://w2.weather.gov/media/publications/assessments/harvey6-18.pdf.
|
Sadegh M, Moftakhari H, Gupta H V, Ragno E, Mazdiyasni O, Sanders B, Matthew R, and AghaKouchak A. 2018. Multihazard Scenarios for Analysis of Compound Extreme Events. Geophysical Research Letters, 45 (11): 5470-5480.
|
Shan X, Du S, Wang L, Zhang M, Li W, Hu H, and Wen J. 2021. Flood Risk Dynamics and Adaptation Analyses for Coastal Cities Based on Internet Big Data and Hydrology-Hydrodynamic Models. Chinese Science Bulletin, 66 (28/29): 3772-3784.
|
Shen Y, Morsy M M, Huxley C, Tahvildari N, and Goodall J L. 2019. Flood Risk Assessment and Increased Resilience for Coastal Urban Watersheds under the Combined Impact of Storm Tide and Heavy Rainfall. Journal of Hydrology, 579: 124159.
|
石海莹,李文欢,吕宇波,冯朝材. 2015. 海南省2014年两次特大风暴潮比较分析. 海洋预报,32(4):75-82.
Shi Haiying, Li Wenhuan, Lyu Yubo, and Meng Zhaocai. 2015. Comparative Analysis of Two Severe Storm Surges of Hainan Province in 2014. Marine Forecast, 32(4): 75-82.
|
孙钦珂,周亮,王宝. 2023. 气候变化背景下沿海特大城市复合洪水灾害空间模拟. 地球信息科学学报,25(12):2427-2438.
Sun Qinke, Zhou Liang, and Wang Bao. 2023. Spatial Simulation of Compound Flood Hazard Risk in Coastal Megacities under Climate Change. Journal of Geoinformation Science, 25(12): 2427-2438.
|
王丹. 2022. 中国沿海地区的洪水风险与适应路径研究. 上海:上海师范大学.
Wang Dan. 2022. Flood Risk in Coastal Areas of China and Adaptive Path Study. Shanghai: Shanghai Normal University.
|
王璐阳,张敏,温家洪,种振涛,Qinghua Y E,Qian K E. 2019. 上海复合极端风暴洪水淹没模拟. 水科学进展,30(4):546-555.
Wang Luyang, Zhang Min, Wen Jiahong, Chong Zhentao, Qinghua Y E, and Qian K E. 2019. Simulation of Extreme Compound Coastal Flooding in Shanghai. Advances in Water Science, 30(4): 546-555.
|
吴胜安,邢彩盈,朱晶晶. 2021. 海南岛强台风事件的气候特征. 自然灾害学报,30(6):244-252.
Wu Shengan, Xing Caiying, and Zhu Jingjing. 2021. Climate Characteristics of Violent Typhoon Events on Hainan Island. Journal of Natural Disasters, 30(6): 244-252.
|
杨星,朱大栋,李朝方,刘志龙. 2013. 按风险率模型分析的设计雨型. 水利学报,44(5):542-548.
Yang Xing, Zhu Dadong, Li Chaofang, and Liu Zhilong. 2013. Design Rain Pattern Based on Risk Rate Model. Journal of Hydraulic Engineering, 44(5): 542-548.
|
Xu H, Ragno E, Jonkman S N, Wang J, Bricker J D, Tian Z, and Sun L. 2023a. Combining Statistical and Hydrodynamic Models to Assess Compound Flood Hazards from Rainfall and Storm Surge: A Case Study of Shanghai. Hydrology and Earth System Sciences[2023-11-16]. https://doi.org/10.5194/hess-2023-261.
|
Xu H, Ragno E, Tan J, Antonini A, Bricker J D, Jonkman S N, Liu Q, and Wang J. 2023b. Perspectives on Compound Flooding in Chinese Estuary Regions. International Journal of Disaster Risk Science, 14 (2): 269-279.
|
Xu H, Tian Z, Sun L, Ye Q, Ragno E, Bricker J, Mao G, Tan J, Wang J, Ke Q, Wang S, and Toumi R. 2022. Compound Flood Impact of Water Level and Rainfall during Tropical Cyclone Periods in a Coastal City: The Case of Shanghai. Natural Hazards and Earth System Sciences, 22 (7): 2347-2358.
|
Xu H, Xu K, Lian J, and Ma C. 2019. Compound Effects of Rainfall and Storm Tides on Coastal Flooding Risk. Stochastic Environmental Research and Risk Assessment, 33 (7): 1249-1261.
|
Xu K, Wang C, Bin L, Shen R, and Zhuang Y. 2023. Climate Change Impact on the Compound Flood Risk in a Coastal City. Journal of Hydrology, 626: 130237.
|
叶姗姗,叶兴成,王以超,朱程亮,刘俊. 2018. 基于Copula 函数的设计暴雨雨型研究. 水资源与水工程学报,29(3):63-68.
Ye Shanshan, Ye Xingcheng, Wang Yichao, Zhu Chengliang, and Liu Jun. 2018. Research on Design Rainstorm Pattern Based on Copula Function. Journal of Water Resources and Water Engineering, 29(3): 63-68.
|
Zellou B and Rahali H. 2019. Assessment of the Joint Impact of Extreme Rainfall and Storm Surge on the Risk of Flooding in a Coastal Area. Journal of Hydrology, 569: 647-665.
|
曾鹏,苏朝晖,方伟华,张海霞,余璐. 2022. 基于高精度房屋类型数据的海口市台风次生洪涝灾害损失评估. 灾害学,37(4):155-165.
Zeng Peng, Su Zhaohui, Fang Weihua, Zhang Haixia, and Yu Lu. Typhoon Flooding Loss Assessment in Haikou City Based on High Precision Building Type Data. Journal of Catastrophology, 37(4): 155-165.
|
Zscheischler J, Westra S, van den Hurk B J J M, Seneviratne S I, Ward P J, Pitman A, AghaKouchak A, Bresch D N, Leonard M, Wahl T, and Zhang X. 2018. Future Climate Risk from Compound Events. Nature Climate Change, 8 (6): 469-477.
|
/
〈 |
|
〉 |