城市地铁客流的时空动态波动特征与比较研究:以深圳市为例
毛润彩(1995—),男,云南楚雄人,硕士研究生,主要研究方向为城市交通规划、交通运输地理,(E-mail)maoruncai@126.com; |
收稿日期: 2023-04-11
修回日期: 2023-10-30
网络出版日期: 2024-07-05
基金资助
国家自然科学基金项目“黄金周自驾游时空行为模式及多尺度集聚效应研究:云南省的实证”(42061030)
云南省交通运输厅科技创新及示范项目“高速公路旅游流时空模式感知与沿线服务设施配置优化研究”(2021-86-4)
Characteristics and Comparison of Spatiotemporal Dynamic Fluctuation of Subway Passenger Flow: A Case Study of Shenzhen
Received date: 2023-04-11
Revised date: 2023-10-30
Online published: 2024-07-05
不同时段下行为主体生活方式的客观变化导致活动者地铁出行空间与模式发生改变,区别不同时段地铁客流的时空异质性特征,有助于引导城市功能更新与集约增长。以深圳市为案例,运用时空数据挖掘与地理空间分析相结合的手段,从整体、站点、OD多视角考察工作日、周末与节假日地铁客流在流量、流向、联系、结构上的时空动态波动特征。研究表明:1)网络整体视角下,工作日、节假日、周末表现为3种不同类型的地铁客流模式,分别呈现“双峰”“平峰”和“小双峰+平峰”形态。2)站点视角下,仅少数站点在工作日与非工作日的客流量及分担率差异显著,工作日客流高度集中于就业功能主导型站点,非工作日客流集中于交通枢纽型及综合型站点;站点周边土地利用的高混合度有助于客流分散和抗扰。3)OD视角下,地铁网络OD客流呈幂律分布且层级分异明显;地铁拓扑网络中心与不同时段下的客流中心均呈空间双耦合特征;周末与节假日的多元化出行以及城市中心的高密度混合开发模式弱化客流对特定线路的依赖,其客流联系易呈圈层结构。
毛润彩 , 戢晓峰 , 尹安藤 , 陈方 , 赵润林 . 城市地铁客流的时空动态波动特征与比较研究:以深圳市为例[J]. 热带地理, 2024 , 44(7) : 1210 -1222 . DOI: 10.13284/j.cnki.rddl.20230248
Objective changes in people's lifestyles at different times of the day lead to changes in metro travel with respect to space and mode. Distinguishing the spatiotemporal heterogeneity characteristics of subway passenger flows at different times of the day can help guide urban functional renewal and intensive growth. Taking Shenzhen as a case study, this study examines the spatiotemporal dynamic fluctuation characteristics of subway passenger flow in terms of volume, direction, connection, and structure on weekdays, weekends, and holidays through spatiotemporal data mining and geospatial analysis from the network, station, and OD(Origin and Destination) perspectives. The results indicate the following: (1) From an overall perspective, three different types of subway passenger flow patterns exist on weekdays, holidays, and weekends: bimodal, flat peak, and small bimodal and flat peak composite patterns, respectively. Weekday subway ridership is significantly higher compared with weekends and holidays. The proportion of short-distance short-time and long-distance long-time trips increases slightly on holidays and weekends, conforming to the beta distribution. By contrast, commuter traffic remains the focus of the current subway operating system service. (2) From the station perspective, Shenzhen has only a few stations with significant differences in weekday and non-weekday patronage and sharing rates. Weekday passenger traffic is highly concentrated in residential and employment-oriented stations. Non-weekday passenger traffic is concentrated in transportation hubs and integrated stations. The high mix of land use around stations helps disperse passenger traffic and resist disturbance at different times. (3) From the OD perspective, OD passenger flow on the subway network has a power law distribution and significant hierarchical differentiation. On weekdays, subway OD passenger flow forms groups with business offices, higher education institutions, and popular business districts. On weekends, the intensity of subway OD passenger flow linkages shows varying degrees of attenuation, and the OD linkage for short-distance travel is more intense. On holidays, subway OD passenger flows form spatial linkage groups with external transportation hubs, popular scenic spots, and commercial centers as the core stations. The center of the metro topological network and that of passenger flow under different time periods are all characterized by spatial coupling. The diversification of travel on weekends and holidays, as well as the high-density mixed-development pattern in urban centers, has weakened the dependence of passenger flows on specific routes, showing a tendency to transition from the linear and multi-block on weekdays to the linear and whole block structure on holidays. This study is expected to provide a reference for the fine operation and organization of subways and the improvement of the quality of urban activity spaces.
表1 个体地铁出行OD信息示例Table 1 Example of OD information for individual subway trips |
ID | 进站时间 | 进站名称 | 所属线路 | 出站时间 | 出站名称 | 所属线路 |
---|---|---|---|---|---|---|
691****59 | 2019-05-01 T 10:09 | 洪浪北 | 5号线 | 2019-05-01 T 10:48 | 深圳湾公园 | 9号线 |
688****74 | 2019-05-01 T 10:09 | 龙胜 | 4号线 | 2019-05-01 T 11:06 | 后海站 | 11号线 |
80****54 | 2019-05-01 T 10:09 | 机场站 | 11号线 | 2019-05-01 T 10:47 | 车公庙站 | 1号线 |
251****79 | 2019-05-01 T 10:09 | 大芬 | 3号线 | 2019-05-01 T 10:46 | 少年宫 | 3号线 |
669****71 | 2019-05-01 T 10:09 | 西丽 | 5号线 | 2019-05-01 T 10:21 | 西丽湖 | 7号线 |
686****22 | 2019-05-01 T 10:09 | 海上世界 | 2号线 | 2019-05-01 T 10:26 | 海月 | 2号线 |
表2 地铁OD客流联系强度划分及分布特征Table 2 Classification and characteristics of passenger linkage intensity at station-to-station level |
时段 | 表征 | 高强度 (>3 500) | 次高强度 (1 201~3 500) | 中等强度 (501~1 200) | 一般强度 (150~500) | 低等强度 (<150) |
---|---|---|---|---|---|---|
工作日 | 典型站点 | 福民―福田口岸、坪洲―深大、坪洲―高新园、固戍―深大、罗湖― 老街等(10对) | 大剧院―罗湖、清湖―深圳北站、华强路―岗厦、民治― 西丽等(122对) | 坂田―西丽、岗厦―购物 公园、大芬―老街、布吉―布心等(647对) | 坪洲―西南、大剧院―岗厦北、新秀― 黄贝岭、少年宫― 莲花北等(2 306对) | 深云―鲤鱼门、华强北―木棉湾、晒布―深圳北站、福田口岸―笋岗等(8 223对) |
集聚客流/万人 | 5.49 | 20.52 | 49.18 | 61.66 | 44.46 | |
平均出行距离/km | 7.04 | 8.4 | 9.62 | 13.16 | 21.43 | |
周末 | 典型站点 | 福民―福田口岸、罗湖―老街、国贸―罗湖、会展中心―福田口岸、华强北―赤尾等(6对) | 大剧院―罗湖、深圳北站―清湖、坪洲―宝安中心、深圳北站―福田口岸等(71对) | 世界之窗―后海、会展中心―少年宫、后瑞―宝安中心、会展中心―华强路、会展中心―白石龙等(420对) | 华强北―泥岗、南联―双龙、布吉―杨美、华新―石厦等 (1 793对) | 景田―龙胜、沙尾―白石龙、上塘―民治、科苑―西丽等 (8 393对) |
集聚客流/万人 | 3.3 | 11.83 | 30.99 | 47.17 | 43.66 | |
平均出行距离/km | 1.88 | 6.12 | 7.94 | 12.72 | 21.1 | |
节假日 | 典型站点 | 福民―福田口岸、罗湖―老街、国贸―罗湖、 深圳北站― 清湖等(6对) | 大剧院―罗湖、华强北―赤尾、固戍―西乡、坪洲―宝安 中心等(60对) | 深圳北站―长龙、深圳北站―白石龙、会展中心― 少年宫、清湖―老街等 (370对) | 下水径―布心、大新―鲤鱼门、会展中心―市民中心、布吉―杨美等(1 534对) | 民治―长岭陂、白石龙―西丽、洪浪北―黄贝岭、民乐―白石龙等(8 756对) |
集聚客流/万人 | 2.87 | 10.15 | 26.69 | 40.71 | 42.26 | |
平均出行距离/km | 3.04 | 6.94 | 8.99 | 12.89 | 20.93 |
1 http://jtys.sz.gov.cn/
毛润彩:构思全文,数据收集与处理,模型构建与分析,论文主笔撰写;
戢晓峰:负责论文研究设计,提供理论框架指导;
尹安藤:数据处理,部分图表绘制;
陈 方:研究方法和模型的构建,文字润色与修改;
赵润林:算法设计与数据分析。
程小云,张学宇,薛顺然,王建军. 2020. 基于多维属性的轨道交通出行行为分类方法. 交通运输工程与信息学报,18(4):166-174.
Cheng Xiaoyun, Zhang Xueyu, Xue Shunran, and Wang Jianjun. 2020. Method of Analyzing Rail Transit Travel Behavior Based on Multidimensional Attributes. Journal of Transportation Engineering and Information, 18(4): 166-174.
|
崔叙,喻冰洁,梁朋朋,王琳,张凌菲. 2021. 基于“客流-用地”的城市轨道交通站点类型识别与空间再平衡研究——以成都市为例. 现代城市研究,(7):68-79.
Cui Xu, Yu Bingjie, Liang Pengpeng, Wang Lin, and Zhang Lingfei. 2021. Urban Rail Transit Station Type Identification and Job-Housing Spatial Rebalancing Based on Passenger Flow and Land Use: Taking Chengdu as an Example. Modern Urban Research, (7): 68-79.
|
曹夏玲. 2021. 城市轨道交通节假日短时客流预测模型研究. 西安:长安大学.
Cao Xialing. 2021. Study on the Short-Term Passenger Flow Forecast Model of Urban Rail Transit Festival. Xi'an: Chang'an University.
|
Gan Z, Feng T, Wu Y, Yang M, and Timmermans H. 2019. Station-Based Average Travel Distance and Its Relationship with Urban Form and Land Use: An Analysis of Smart Card Data in Nanjing City, China. Transport Policy, 79: 137-154.
|
Gan Z, Yang M, Feng T, and Timmermans H. 2020. Understanding Urban Mobility Patterns from a Spatiotemporal Perspective: Daily Ridership Profiles of Metro Stations. Transportation, 47(1): 315-336.
|
Gong Y, Lin Y, and Duan Z. 2017. Exploring the Spatiotemporal Structure of Dynamic Urban Space Using Metro Smart Card Records. Computers, Environment and Urban Systems, 64: 169-183.
|
甘佐贤. 2019. 建成环境对城市轨道交通客流及出行特征的影响机理研究. 南京:东南大学.
Gan Zuoxian. 2019. Impаct of Built Environment on the Passenger Flows and Transfer Behavior of Urban Rail Transit. Nanjing: Southeast University.
|
高悦尔,崔桂籽,胥川,边经卫. 2019. 基于浮动车数据的城市旅游景点周边路网交通状态评价. 经济地理,39(3):225-231.
Gao Yue'er, Cui Guizi, Xu Chuan, and Bian Jingwei. 2019. Road Traffic Status in the Surrounding of Urban Tourist Attractions Based on FCD. Economic Geography, 39(3): 225-231.
|
黄洁,王姣娥,靳海涛,金凤君. 2018. 北京市地铁客流的时空分布格局及特征——基于智能交通卡数据. 地理科学进展,37(3):397-406.
Huang Jie, Wang Jiao'e, Jin Haitao, and Jin Fengjun. 2018. Investigating Spatiotemporal Patterns of Passenger Flows in the Beijing Metro System from Smart Card Data. Progress in Geography, 37(3): 397-406.
|
黄盛,李卫江,朱梦茹,刘振. 2022. 降雨事件对上海地铁通勤客流时空影响的精细尺度研究. 地球信息科学学报,24(2):249-262.
Huang Sheng, Li Weijiang, Zhu Mengru, and Liu Zhen. 2022. A Fine-Scale Study on Spatio-Temporal Patterns of Metro Commuter Flows under Rainfall Events in Shanghai. Journal of Geo-Information Science, 24(2): 249-262.
|
韩会然,杨成凤. 2019. 建成环境对出行行为的影响研究进展与展望. 安徽师范大学学报(自然科学版),42(2):166-173.
Han Huiran and Yang Chengfeng. 2019. Progress and Prospects of the Research on Built Environment and Residents' Travel Behavior. Journal of Anhui Normal University(Natural Science), 42(2): 166-173.
|
纪小美,熊怡清,张子昂. 2020. 地铁在城市旅游交通中的作用及其优化——以南京主城区为例. 资源科学,42(5):946-955.
Ji Xiaomei, Xiong Yiqing, and Zhang Zi'ang. 2020. The Role of Subway in Urban Tourism Traffic and Its Optimization: The Case of the Main Urban Districts of Nanjing City. Resources Science, 42(5): 946-955.
|
柯文前,陈伟,杨青. 2018. 基于高速公路流的区域城市网络空间组织模式——以江苏省为例. 地理研究,37(9):1832-1847.
Ke Wenqian, Chen Wei, and Yang Qing. 2018. Uncovering Spatial Organization Patterns of Regional City Networks from Expressway Traffic Flow Data: A Case Study of Jiangsu Province, China. Geographical Research, 37(9): 1832-1847.
|
Lin P, Weng J, Fu Y, Alivanistos D, and Yin B. 2020. Study on the Topology and Dynamics of the Rail Transit Network Based on Automatic Fare Collection Data. Physica A: Statistical Mechanics and its Applications, 545: 123538.
|
Liu J, Shi W, and Chen P. 2020 Exploring Travel Patterns during the Holiday Season: A Case Study of Shenzhen Metro System during the Chinese Spring Festival. ISPRS International Journal of Geo-Information, 9(11): 651.
|
李涛,王姣娥,高兴川. 2020. 中国居民工作日与节假日的城际出行网络异同性研究. 地理学报,75(4):833-848.
Li Tao, Wang Jiao'e, and Gao Xingchuan. 2020. Comparison of Inter-City Travel Network during Weekdays and Holiday in China. Acta Geographica Sinica, 75(4): 833-848.
|
廖燕晴,高悦尔,史志法. 2021. 基于浮动车数据的城市旅游通道识别研究——以厦门市为例. 城市规划,45(7):73-82.
Liao Yanqing, Gao Yue'er and Shi Zhifa. 2021. Identifying Urban Tourism Corridor Based on Floating Car Data: A Case Study of Xiamen. City Planning Review, 45(7): 73-82.
|
刘翔,陈小鸿,田茗舒. 2023. 成长性视角下建成环境对轨道交通站点客流影响分析. 交通运输系统工程与信息,23(2):121-127.
Liu Xiang, Chen Xiaohong, and Tian Mingshu. 2023. Effects of Built Environment on Metro Ridership Considering Stage of Growth. Journal of Transportation Systems Engineering and Information Technology, 23(2):121-127.
|
刘丽敏,虞虎,靳海涛. 2018. 基于公交刷卡数据的北京城市居民周末户外休闲行为特征研究. 地域研究与开发,37(6):52-57.
Liu Limin, Yu Hu, and Jin Haitao. 2018. Characteristics of Outdoor Recreation Behaviors of Beijing Residents on Weekends Based on Public Transportation Data. Areal Research and Development, 37(6): 52-57.
|
刘耀彬,孙敏. 2021. 基于信息流的工作日与节假日城市网络联系特征对比——以长江中游城市群为例. 经济地理,41(5):75-84.
Liu Yaobin and Sun Min. 2021. Comparison on the Characteristics of City Network Connections between Workdays and Holidays Based on information flow: A Case Study of the Urban Agglomeration in the Middle Reaches of the Yangtze River. Economic Geography, 41(5): 75-84.
|
Ma L and Ye R. 2019. Does Daily Commuting Behavior Matter to Employee Productivity? Journal of Transport Geography, 76(APR. ): 130-141.
|
孟斌,黄松,尹芹. 2019. 北京市居民地铁出行出发时间弹性时空分布特征研究. 地球信息科学学报,21(1):107-117.
Meng Bin, Huang Song, and Yin Qin. 2019. Spatial and Temporal Distribution Characteristics of Residents' Depart Times Elasticity in Beijing. Journal of Geo-Information Science, 21(1): 107-117.
|
彭诗尧,陈绍宽,许奇,牛家祺. 2021. 基于POI的土地利用与轨道交通客流的空间特征. 地理学报,76(2):459-470.
Peng Shiyao, Chen Shaokuan, Xu Qi, and Niu Jiaqi. 2021. Spatial Characteristics of Land Use Based on POI and Urban Rail Transit Passenger Flow. Acta Geographica Sinica, 76(2): 459-470.
|
任鹏,彭建东,杨红,王安琪,代琦. 2021. 武汉市轨道交通站点周边地区职住平衡与建成环境的关系研究. 地球信息科学学报,23(7):1231-1245.
Ren Peng, Peng Jiandong, Yang Hong, Wang Anqi, and Dai Qi. 2021. Relationship between Jobs-Housing Balance and Built Environment in Areas around Urban Rail Transit Stations of Wuhan. Journal of Geo-Information Science, 23(7): 1231-1245.
|
Su S, Zhang H, Wang M, Weng M, and Kang M. 2021. Transit-Oriented Development (TOD) Typologies around Metro Station Areas in Urban China: A Comparative Analysis of Five Typical Megacities for Planning Implications. Journal of Transport Geography, 90: 102939.
|
Sun D, Zhao Y, and Lu Q. 2015. Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6): 6919-6936.
|
谭章智,李少英,黎夏,刘小平,陈逸敏,李威贤. 2017a. 城市轨道交通对土地利用变化的时空效应. 地理学报,72(5):850-862.
Tan Zhangzhi, Li Shaoyin, Li Xia, Liu Xiaoping, Chen Yimin, and Li Weixian. 2017a. Spatio-Temporal Effects of Urban Rail Transit on Complex Land-Use Change. Acta Geographica Sinica, 72(5): 850-862.
|
谭章智,李少英,黎夏,刘小平,陈逸敏. 2017b. 基于地铁客流的广州地铁站点类型识别. 热带地理,37(1):102-111.
Tan Zhangzhi, Li Shaoying, Li Xia, Liu Xiaoping, and Chen Yimin. 2017b. Clustering of Metro Stations in Guangzhou Based on Passenger Flow. Tropical Geography, 37(1): 102-111.
|
汪光焘,陈小鸿,殷广涛,郭继孚,陈艳艳. 2019. 新常态下城市交通理论创新与发展对策研究——成果概要. 城市交通,17(5):1-12.
Wang Guangtao, Chen Xiaohong, Yin Guangtao, Guo Jifu, and Chen Yanyan. 2019. Characteristics of Outdoor Recreation Behaviors of Beijing Residents on Weekends Based on Public Transportation Data. Urban Transport of China, 17(5): 1-12.
|
王姣娥,熊美成,黄洁. 2022. 时空约束下的地铁可达性研究:以北京为例. 地理科学,42(1):83-94.
Wang Jiao'e, Xiong Meicheng, and Huang Jie. 2022. Subway Accessibility under Space-Time Constraints: A Case Study of Beijing. Scientia Geographica Sinica, 42(1): 83-94.
|
王博彬,邵春福,计寻,诸葛承祥,杨婷. 2015. 多方式交通信息下节假日活动链重构机理研究. 交通运输系统工程与信息,15(4):99-105.
Wang Bobin, Shao Chunfu, Ji Xun, Zhuge Chengxiang, and Yang Ting. 2015. Reconstruction Mechanisms of Holiday Tour under Integrated Multimodal Travel Information Service. Journal of Transportation Systems Engineering and Information Technology, 15(4): 99-105.
|
叶昌东,冯碧盈,姚华松,代丹丹. 2021. 广州地铁站点交通流特征与居民地铁出行的人群分异. 热带地理,41(5):918-927.
Ye Changdong, Feng Biying, Yao Huasong, and Dai Dandan. 2021. Innovation Policies for Urban Transportation Development under the New Normal: Summary of Achievements. Tropical Geography, 41(5): 918-927.
|
尹芹,孟斌,张丽英. 2016. 基于客流特征的北京地铁站点类型识别. 地理科学进展,35(1):126-134.
Yin Qin, Meng Bin, and Zhang Liying. 2016. Classification of Subway Stations in Beijing Based on Passenger Flow Characteristics. Progress in Geography, 35(1): 126-134.
|
禹丹丹,陈文,韩庆龙,顾御坤,姚娟娟. 2019. 北京地铁节假日客流特点和运营组织方法分析. 现代城市轨道交通,(4):58-66.
Yu Dandan, Chen Wen, Han Qinglon, Gu Yukun, and Yao Juanjuan. 2019. Analysis of Beijing Subway Passenger Flow Characteristics and Operation Organization Method During Holidays. Modern Urban Transit, (4): 58-66.
|
闫闪闪,梁留科,索志辉,方明. 2017. 基于大数据的洛阳市旅游流时空分布特征. 经济地理,37(8):216-224.
Yan Shanshan, Liang Like, Suo Zhihui, and Fang Ming. 2017. Big Data Based Spatiotemporal Distribution Characters of Tourism Flow in Luoyang. Economic Geography, 37(8): 216-224.
|
Zhang Y and Liu L. 2018. Understanding Temporal Pattern of Human Activities using Temporal Areas of Interest. Applied Geography, 94: 95-106.
|
/
〈 |
|
〉 |