长三角一体化下人才集聚、知识溢出的时空演化机制
靳财(1998—),男,安徽阜阳人,博士研究生,主要从事农业经济学研究,(Email)jinc612@outlook.com; |
收稿日期: 2023-07-22
修回日期: 2023-12-09
网络出版日期: 2024-09-05
基金资助
安徽省教育厅社会科学重点项目(SK2020A0131)
2022年度安徽省新时代育人质量工程项目(2022xscx048)
2021年北京大学沈体雁教授课题组空间计量实践营“空间计量经济学与空间人口研究”项目
Spatiotemporal Evolution and Influence Mechanism of Talent Agglomeration and Knowledge Spillover under the Integration of the Yangtze River Delta
Received date: 2023-07-22
Revised date: 2023-12-09
Online published: 2024-09-05
为深入了解区域一体化政策对区域人才集聚和知识溢出的影响机理,运用渐进式双重差分和空间双重差分方法检验了长三角一体化政策对人才集聚与知识溢出的影响及作用机理。结果表明:1)一体化政策显著促进了长三角城市群的人才集聚和知识溢出,且具有显著的空间溢出效应。2)异质性分析表明,一体化政策显著促进了中心城市的人才集聚与知识溢出,对外围城市的影响并不显著。同时,从人口维度看,一体化政策对于大中型人口规模城市的人才集聚和知识溢出影响更积极。3)机制分析表明,城市化水平、市场一体化、教育、公共服务供给及交通基础设施水平越高的城市,一体化政策对人才集聚的正向作用越大;一体化政策还通过提升人力资本水平,显著促进了人才集聚。
靳财 , 李坦 , 惠宝航 , 劳昕 , 沈体雁 . 长三角一体化下人才集聚、知识溢出的时空演化机制[J]. 热带地理, 2024 , 44(9) : 1667 -1685 . DOI: 10.13284/j.cnki.rddl.20230575
The primary objective of a regional integration strategy is to foster talent agglomeration and knowledge spillover, thereby enhancing the high-quality development of the regional economy. Extant literature predominantly concentrates on talent distribution and the pattern of knowledge spillover under integration policy. However, scant attention has been paid to the causal inference of regional integration policy on talent aggregation and knowledge spillover. Under the new economic structure of establishing a unified national market and high-quality development, a comprehensive understanding of the evolutionary mechanisms of integration policy in relation to talent aggregation and knowledge spillover is pivotal for shaping regional talent policies and refining theories of population mobility. To address this gap, this study employs time-varying Difference-In-Differences (DID) and spatial DID approaches to empirically assess the influence and underlying mechanisms of regional integration policy within the context of the Yangtze River Delta Urban Agglomeration. The analysis reveals three key findings. First, the integration policy demonstrates a substantial facilitative impact on talent aggregation and knowledge diffusion within the Yangtze River Delta Urban Agglomeration, bolstering these processes by 10.5% and 14.8%, respectively, and exhibiting significant spatial spillover effects. This indicates that the policy not only attracts talent to specific regions but also encourages the spread of knowledge beyond the immediate geographical boundaries of the targeted areas. Second, heterogeneity analysis shows that the policy effectively enhances talent aggregation and knowledge spillover in central cities, with no significant influence observed in peripheral cities. This disparity suggests that central cities, with their advanced infrastructure and economic opportunities, are better positioned to capitalize on the benefits of the integration policy. Furthermore, from a demographic perspective, the policy exhibits a more pronounced positive effect on talent aggregation and knowledge spillovers in medium- and large-scale cities. This trend underscores the importance of city size and demographic factors in the successful implementation of integration policies. Third, mechanistic analysis indicates that the beneficial impacts of the policy on talent concentration are more pronounced in cities characterized by higher levels of urbanization, investment, market integration, education, income level, public service provision, and transportation infrastructure. These factors collectively create an environment conducive to talent attraction and retention, amplifying the effects of the integration policy. Furthermore, the policy has significantly enhanced talent agglomeration by increasing the stock of human capital, highlighting the role of education and skill development in fostering regional economic growth. In conclusion, this study provides a theoretical basis and practical reference for urban agglomerations aiming to spearhead the high-quality advancement of regional economies. By revealing the intrinsic laws and influence mechanisms of regional integration policy, the findings offer valuable insights for policymakers seeking to optimize talent policies and promote sustainable economic development. The empirical evidence highlights the importance of targeted policy interventions that consider the unique characteristics of different urban areas, thereby ensuring a balanced and inclusive approach to regional development. Future research should continue to explore the long-term effects of integration policies and their potential to drive innovation and economic resilience in an increasingly interconnected world.
表1 长三角一体化政策时间节点Table 1 Timeline of the Yangtze River Delta integration policy |
依据 | 城市 | 城市数量/个 | 政策节点 |
---|---|---|---|
合计 | — | 27 | — |
《长三角洲地区区域规划》 | 上海、南京、苏州、无锡、常州、镇江、扬州、泰州、南通、杭州、宁波、温州、湖州、 嘉兴、绍兴、舟山、金华、台州 | 18 | 2010年 |
《国务院关于依托黄金水道推动 长江经济带发展的指导意见》 | 合肥 | 1 | 2014年 |
《长江三角洲城市群发展规划》 | 芜湖、滁州、马鞍山、铜陵、池州、安庆、宣城、盐城 | 8 | 2016年 |
表2 主要变量说明及描述性统计Table 2 Description of main variables and descriptive statistics |
变量 | 定义 | 观测值/个 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
Y 1 | 高端服务业从业人数与行政区域面积的比值 | 1 666 | 1.556 | 0.760 | 0.476 | 4.366 |
Y 2 | 专利授权量的自然对数 | 1 666 | 7.370 | 1.603 | 4.078 | 10.88 |
DID | 政策虚拟变量 | 1 666 | 0.125 | 0.331 | 0.000 | 1.000 |
Pgdp | 人均地区生产总值自然对数 | 1 666 | 10.532 | 0.705 | 8.296 | 12.201 |
Fdi | 实际使用外资金额自然对数 | 1 666 | 10.668 | 1.308 | 7.066 | 14.460 |
Fin | 年末金融存贷款余额的自然对数 | 1 666 | 17.225 | 1.146 | 14.441 | 21.402 |
Sch1 | 中学学校数的自然对数 | 1 666 | 5.364 | 0.556 | 3.584 | 6.736 |
Sch2 | 高等学校数的自然对数 | 1 666 | 1.600 | 0.972 | 0.000 | 4.431 |
Ind2 | 第二产业增加值占GDP的比值 | 1 666 | 0.496 | 0.087 | 0.147 | 0.807 |
Ind3 | 第三产业增加值占GDP的比值 | 1 666 | 0.388 | 0.085 | 0.157 | 0.727 |
Inter | 互联网用户数的自然对数 | 1 666 | 13.189 | 1.061 | 10.054 | 17.762 |
IE | 规模上工业企业数的自然对数 | 1 666 | 7.188 | 0.840 | 4.533 | 9.841 |
|
图1 2007—2019年长三角城市群人才空间分布Fig.1 Spatial distribution of talents in the Yangtze River Delta City Cluster during 2007-2019 |
表3 双重差分模型结果Table 3 Results of Differences-in-Differences model |
变量 | 模型(1) | 模型(2) | 模型(3) | 模型(4) |
---|---|---|---|---|
Y 1 | Y 1 | Y 2 | Y 2 | |
DID | 0.105**(0.045) | 0.090***(0.020) | 0.148**(0.068) | 0.172***(0.043) |
W×DID | ― | ― | ― | 0.321***(0.118) |
DID直接效应 | ― | 0.091***(0.021) | ― | 0.136***(0.046) |
DID空间溢出效应 | ― | 0.029***(0.009) | ― | 0.396***(0.139) |
DID总效应 | ― | 0.120***(0.028) | ― | 0.531***(0.130) |
ρ | ― | 0.241***(0.044) | ― | 0.143***(0.048) |
δ2 | ― | 0.023***(0.001) | ― | 0.090***(0.003) |
控制变量 | 控制 | 控制 | 控制 | 控制 |
时间效应 | 控制 | 控制 | 控制 | 控制 |
个体效应 | 控制 | 控制 | 控制 | 控制 |
_cons | 2.734*(1.557) | ― | -7.606***(1.832) | ― |
观测值/个 | 1 666 | 1 666 | 1 666 | 1 666 |
R 2 | 0.566 | 0.182 | 0.909 | 0.888 |
|
表4 控制其他政策效应后的回归结果Table 4 Regression results after controlling for other policy effects |
变量 | 政策1 | 政策2 | |||
---|---|---|---|---|---|
模型(1) | 模型(2) | 模型(3) | 模型(4) | ||
Y 1 | Y 2 | Y 1 | Y 2 | ||
DID | 0.090**(0.042) | 0.174**(0.071) | 0.103**(0.044) | 0.170**(0.071) | |
政策1×时间虚拟变量 | 0.197***(0.049) | -0.043(0.078) | ― | ― | |
政策2×时间虚拟变量 | ― | ― | 0.124***(0.045) | 0.006(0.082) | |
观测值/个 | 1 666 | 1 666 | 1 666 | 1 666 | |
R 2 | 0.581 | 0.909 | 0.552 | 0.909 | |
控制变量 | 控制 | 控制 | 控制 | 控制 | |
城市固定效应 | 控制 | 控制 | 控制 | 控制 | |
时间固定效应 | 控制 | 控制 | 控制 | 控制 | |
_cons | 2.505*(1.511) | -7.540***(1.848) | 2.666*(1.536) | -7.611***(1.829) |
表5 基于经济距离矩阵的回归结果Table 5 Regression results based on economic distance matrix |
变量 | 模型(1) | 模型(2) |
---|---|---|
Y 1 | Y 2 | |
DID | 0.090***(0.020) | 0.172***(0.043) |
W×DID | ― | 0.201*(0.112) |
DID直接效应 | 0.092***(0.021) | 0.175***(0.044) |
DID空间溢出效应 | 0.029***(0.009) | 0.224*(0.120) |
DID总效应 | 0.121***(0.028) | 0.400***(0.118) |
ρ | 0.242***(0.043) | 0.047(0.047) |
δ 2 | 0.023***(0.001) | 0.090***(0.003) |
观测值/个 | 1 666 | 1 666 |
R 2 | 0.177 | 0.889 |
控制变量 | 控制 | 控制 |
城市固定效应 | 控制 | 控制 |
时间固定效应 | 控制 | 控制 |
表6 更换被解释变量的结果Table 6 Results of replacing the explanatory variables |
变量 | 模型(1) | 模型(2) |
---|---|---|
人才数量 | 专利申请量 | |
DID | 0.124***(0.044) | 0.146**(0.069) |
控制变量 | 控制 | 控制 |
时间效应 | 控制 | 控制 |
个体效应 | 控制 | 控制 |
_cons | 6.402***(1.712) | -6.720***(1.861) |
观测值/个 | 1 666 | 1 666 |
R 2 | 0.638 | 0.909 |
表7 “中心—外围”城市分样本回归结果Table 7 Regression results of the "center-periphery" city subsample |
类别 | 变量 | 模型(1) | 模型(2) |
---|---|---|---|
Y 1 | Y 2 | ||
中心 城市 | DID | 0.318***(0.123) | 0.374***(0.093) |
观测值/个 | 1 414 | 1 414 | |
R 2 | 0.408 | 0.917 | |
_cons | 7.796(4.907) | -7.747***(1.984) | |
外围 城市 | DID | 0.044(0.169) | 0.100(0.080) |
观测值/个 | 1 554 | 1 554 | |
R2 | 0.385 | 0.911 | |
_cons | -0.635(5.345) | -7.805***(2.002) |
|
表8 基于城区人口规模分样本回归结果Table 8 Regression results based on urban population size subsample |
人口规模/万人 | 变量 | 模型(1) | 模型(2) |
---|---|---|---|
Y 1 | Y 2 | ||
<300 | DID | 0.034(0.042) | 0.153*(0.083) |
观测值/个 | 1 582 | 1 582 | |
R 2 | 0.546 | 0.909 | |
300~500 | DID | 0.190***(0.054) | 0.305***(0.096) |
观测值/个 | 1 330 | 1 330 | |
R 2 | 0.544 | 0.918 | |
>500 | DID | 0.478***(0.093) | 0.258***(0.093) |
观测值/个 | 1 358 | 1 358 | |
R 2 | 0.579 | 0.918 |
表9 交互项对人才集聚的影响Table 9 Impact of interaction terms on talent clustering |
自变量 | 模型(1) | 模型(2) | 模型(3) | 模型(4) | 模型(5) | 模型(6) | 模型(7) | 模型(8) |
---|---|---|---|---|---|---|---|---|
政策×专利数 | 政策×职工 平均工资 | 政策×义务教育 在校生人数 | 政策×高等教育 在校生人数 | 政策×城市化 水平 | 政策×市场 一体化 | 政策×公共服务 | 政策×交通基础 设施 | |
_cons | 2.635* (1.555) | 2.701* (1.558) | 2.692* (1.553) | 2.715* (1.556) | 2.593* (1.556) | 2.224 (1.597) | 2.728* (1.549) | 2.747* (1.556) |
回归系数 | 0.014*** (0.005) | 0.010** (0.004) | 0.033*** (0.012) | 0.011** (0.004) | 0.002** (0.001) | 0.007* (0.004) | 0.025*** (0.009) | 0.011** (0.005) |
观测值/个 | 1 666 | 1 666 | 1 666 | 1 666 | 1 666 | 1 666 | 1 666 | 1 666 |
R2 | 0.569 | 0.567 | 0.569 | 0.569 | 0.570 | 0.549 | 0.569 | 0.566 |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
时间固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
城市固定效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
表10 政策对人力资本和人口密度的影响Table 10 Impact of policies on human capital and population density |
变量 | 模型(1) | 模型(2) |
---|---|---|
人力资本水平 | 人口密度 | |
DID | 0.003***(0.001) | 0.002(0.002) |
控制变量 | 控制 | 控制 |
城市固定效应 | 控制 | 控制 |
时间固定效应 | 控制 | 控制 |
_cons | 0.059**(0.025) | 0.180***(0.040) |
观测值/个 | 1 666 | 1 666 |
R 2 | 0.430 | 0.211 |
附表1 全局莫兰指数Appendix table 1 Global Moran index |
年份 | Y 1 | Y 2 | |||
---|---|---|---|---|---|
莫兰指数 | P值 | 莫兰指数 | P值 | ||
2006 | 0.332 | 0.000 | 0.382 | 0.000 | |
2007 | 0.327 | 0.000 | 0.375 | 0.000 | |
2008 | 0.323 | 0.000 | 0.378 | 0.000 | |
2009 | 0.338 | 0.000 | 0.383 | 0.000 | |
2010 | 0.350 | 0.000 | 0.385 | 0.000 | |
2011 | 0.353 | 0.000 | 0.385 | 0.000 | |
2012 | 0.378 | 0.000 | 0.386 | 0.000 | |
2013 | 0.378 | 0.000 | 0.372 | 0.000 | |
2014 | 0.382 | 0.000 | 0.386 | 0.000 | |
2015 | 0.380 | 0.000 | 0.391 | 0.000 | |
2016 | 0.365 | 0.000 | 0.381 | 0.000 | |
2017 | 0.362 | 0.000 | 0.358 | 0.000 | |
2018 | 0.353 | 0.000 | 0.353 | 0.000 | |
2019 | 0.346 | 0.000 | 0.324 | 0.000 |
附表2 LM及Robust LM检验结果Appendix table 2 Results of LM and Robust LM tests |
模型 | Y 1 | Y 2 | ||||
---|---|---|---|---|---|---|
LM | P值 | LM | P值 | |||
空间误差模型 | 莫兰指数 | 4.415 | 0.000 | 7.460 | 0.000 | |
拉格朗日乘数法检验(LM检验) | 18.270 | 0.000 | 53.142 | 0.000 | ||
稳健拉格朗日乘数法检验(Robust LM检验) | 0.091 | 0.762 | 6.329 | 0.012 | ||
空间滞后模型 | 拉格朗日乘数法检验(LM检验) | 26.772 | 0.000 | 81.281 | 0.000 | |
稳健拉格朗日乘数法检验(Robust LM检验) | 8.593 | 0.003 | 34.467 | 0.000 |
附表3 LR检验Appendix table 3 LR tests |
因变量 | 检验值 | P值 | 结论 |
---|---|---|---|
Y 2 | 22.85 | 0.007 | 拒绝退化SAR模型 |
Y 2 | 24.81 | 0.003 | 拒绝退化SEM模型 |
附表4 Hausman检验Appendix table 4 Hausman test |
因变量 | P值 | 结论 |
---|---|---|
Y 1 | 0.001 | 选择固定效应模型 |
Y 2 | 0.000 | 选择固定效应模型 |
1 参见《中华人民共和国国民经济和社会发展第十一个五年规划纲要》,http://www.gov.cn/gongbao/content/2006/content_268766.htm。
2 参见《国家发展改革委关于印发长江三角洲地区区域规划的通知》,https://www.gov.cn/zwgk/2010-06/22/content_1633868.htm。
3 参见《国务院关于依托黄金水道推动长江经济带发展的指导意见》,http://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm。
4 参见《国家发展改革委 住房城乡建设部关于印发长江三角洲城市群发展规划的通知》,https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201606/t20160603_962187.html?code=&state=123。
5 为避免因为改变指标的权重而导致不同年份数据不可比,市场一体化指数采用算术平均法计算各分项指数和方面指数的权重。更详细的计算方法可参见《中国市场化进程对经济增长的贡献》(樊纲 等,2011)
靳 财:论文撰写与修改;
李 坦:论文修改指导及科研基金支持;
惠宝航:数据获取与分析、论文撰写;
劳 昕、沈体雁:论文修改指导。
Arntz M. 2006. What Attracts Human Capital? Understanding the Skill Composition of Interregional Job Matches in Germany. Regional Studies, 44(4): 423-441.
|
白俊红,蒋伏心. 2015. 协同创新、空间关联与区域创新绩效. 经济研究,50(7):174-187.
Bai Junhong and Jiang Fuxin. 2015. Synergy Innovation, Spatial Correlation and Regional Innovation Performance. Economic Research Journal, 50(7): 174-187.
|
白俊红,王钺,蒋伏心,李婧. 2017. 研发要素流动、空间知识溢出与经济增长. 经济研究,52(7):109-123.
Bai Junhong, Wang Yue, Jiang Fuxin, and Li Jing. 2017. R&D Element Flow, Spatial Knowledge Spillovers and Economic Growth. Economic Research Journal, 52(7): 109-123.
|
卞元超,吴利华,白俊红. 2019. 高铁开通是否促进了区域创新? 金融研究,(6):132-149.
Bian Yuanchao, Wu Lihua, and Bai Junhong. 2019. Does High-Speed Rail Improve Regional lnnovation in China? Journal of Financial Research, (6): 132-149.
|
Boschma R and Iammarino S. 2009. Related Variety, Trade Linkages, and Regional Growth in Italy. Economic Geography, 85(3): 289-311.
|
Chagas A L S, Azzoni C R, and Almeida A N. 2016. A Spatial Difference-in-Differences Analysis of the Impact of Sugarcane Production on Respiratory Diseases. Regional Science and Urban Economics, 59: 24-36.
|
陈斌开,李银银. 2020. 再分配政策对农村收入分配的影响——基于税费体制改革的经验研究. 中国社会科学,(2):70-92,205-206.
Chen Binkai and Li Yinyin. 2020. The Influence of Redistribution Policy on Rural Income Distribution—An Empirical Research Based on the Tax and Fee System Reform. Social Sciences in China, (2): 70-92, 205-206.
|
陈雯,孙伟,刘崇刚,刘伟. 2021. 长三角区域一体化与高质量发展. 经济地理,41(10):127-134.
Chen Wen, Sun Wei, Liu Chonggang, and Liu Wei. 2021. Regional Integration and High-Quality Development in the Yangtze River Delta Region. Economic Geography, 41(10): 127-134.
|
陈珍珍,何宇,徐长生. 2021. 国家级新区对经济发展的提升效应——基于293个城市的多期双重差分检验. 城市问题,(3):75-87.
Chen Zhenzhen, He Yu, and Xu Changsheng. 2021.The Enhancement Effect of State-Level New Areas on Economic Development: Based on 293 Cities by Multi-Period Difference-in-Difference Model. Urban Problems, (3): 75-87.
|
陈子真,雷振丹. 2018. 产业协同集聚对区域经济的影响研究. 区域经济评论,(3):50-58.
Chen Zizhen and Lei Zhendan. 2018. Research on the Effect of Industry Co-Agglomeration on Regional Economy. Regional Economic Review, (3): 50-58.
|
崔祥民,柴晨星. 2022. 创新人才集聚对经济高质量发展的影响效应研究——基于长三角41个城市面板数据的实证分析. 软科学,36(6):106-114.
Cui Xiangmin and Chai Chenxing. 2022. Research on the Effect of Innovative Talent Agglomeration on the Development of High Quality Economy—Empirical Analysis Based on 41 Urban Panel Data in Yangtze River Delta. Soft Science, 36(6): 106-114.
|
Dubé J, Legros D, Thériault M, and Des R F. 2014. A Spatial Difference-in-Differences Estimator to Evaluate the Effect of Change in Public Mass Transit Systems on House Prices. Transportation Research Part B: Methodological, 64: 24-40.
|
樊纲,王小鲁,马光荣. 2011. 中国市场化进程对经济增长的贡献. 经济研究,46(9):4-16.
Fan Gang, Wang Xiaolu, and Ma Guangrong. 2011. Contribution of Marketization to China's Economic Growth. Economic Research Journal, 46(9): 4-16.
|
范渊,姜欣辰,冯婷婷. 2022. 京津冀协同发展下世界级机场群规划布局模式研究. 宏观经济管理,(1):68-91.
Fan Yuan, Jiang Xinchen, Feng Tingting. 2022. Study on the Planning and Layout Model of World-Class Airport Clusters under Beijing-Tianjin-Hebei Synergistic Development. Macroeconomic Management, (1): 68-91.
|
Glaeser E L, Kallal H D, Scheinkman J A, and Shleifer A. 1992. Growth in Cities. Journal of Political Economy, 100(6): 1126-1152.
|
古恒宇,沈体雁. 2021. 中国高学历人才的空间演化特征及驱动因素. 地理学报,76(2):326-340.
Gu Hengyu and Shen Tiyan. 2021. Spatial Evolution Characteristics and Driving Forces of Chinese Highly Educated talents. Acta Geographica Sinica, 76(2): 326-340.
|
古恒宇,李薇,刘晔,武荣伟. 2023. 异地养老、家属随迁与中国流动老人居留意愿. 热带地理,43(6):1123-1133.
Gu Hengyu, Li Wei, Liu Ye, and Wu Rongwei. 2023. Off-Site Pension, Migrant Families, and the Settlement Intention of Older Migrants in China. Tropical Geography, 43 (6): 1123-1133.
|
国家统计局. 2008—2020,2021. 中国城市统计年鉴. 北京:中国统计出版社.
National Bureau of Statistics. 2008-2020, 2021. China City Statistical Yearbook. Beijing: China Statistics Press.
|
国家统计局. 2017. 中国城市建设统计年鉴. 北京:中国统计出版社.
National Bureau of Statistics. 2017. China Urban Construction Statistical Yearbook. Beijing: China Statistics Press.
|
郭艺,曹贤忠,魏文栋,曾刚. 2022. 长三角区域一体化对城市碳排放的影响研究. 地理研究,41(1):181-192.
Guo Yi, Cao Xianzhong, Wei Wendong, and Zeng Gang. 2022. The Impact of Regional Integration in the Yangtze River Delta on Urban Carbon Emissions. Geographical Research, 41(1): 181-192.
|
Hippel V Eric. 1993. "Sticky Information" and the Locus of Problem Solving: Implications for Innovation. Working Papers, 40(4): 429-439.
|
Holm J R and Ostergaard C R. 2015. Regional Employment Growth, Shocks and Regional Industrial Resilience: A Quantitative Analysis of the Danish ICT Sector. Regional Studies, 49(1): 95-112.
|
侯爱军,夏恩君,李森. 2015. 区域人才流动知识溢出效应的实证研究. 技术经济,34(9):7-13,20.
Hou Aijun, Xia Enjun, and Li Seng. 2015. Empirical Study on Knowledge Spillover Effect of Regional Talent Mobility. Journal of Technology Economics, 34(9): 7-13, 20.
|
胡森林,鲍涵,郝均,曾刚. 2022. 环境规制对长三角城市绿色发展的影响——基于技术创新的作用路径分析.自然资源学报,37(6):1572-1585.
Hu Senlin, Bao Han, Hao Jun, and Zeng Gang. 2022. Research on the Impact of Environmental Regulation on Urban Green Development in the Yangtze River Delta: An Analysis of Intermediary Mechanism Based on Technological Innovation. Journal of Natural Resources, 37(6): 1572-1585.
|
蒋冠宏. 2022. 企业并购如何影响绩效:基于中国工业企业并购视角. 管理世界,38(7):196-212.
Jiang Guanhong. 2022. How M&A Effect the Performance of Acquired Firms: Based on the Perspective of Merge and Acquisition of Chinese Industrial Firms. Journal of Management World, 38(7): 196-212.
|
江小涓,孟丽君. 2021. 内循环为主、外循环赋能与更高水平双循环——国际经验与中国实践. 管理世界,37(1):1-19.
Jiang Xiaojuan and Meng Liiun. 2021. Mainly Inner Circulation, Outer Circulation Empowerment and Higher Level Double Circulation: International Experience and Chinese Practice. Journal of Management World, 37(1): 1-19.
|
Krugman P. 1991. Increasing Returns and Economic Geography. Journal of Political Economy, 99(3): 483-499.
|
李兰冰,张聪聪. 2022. 高速公路连通性对区域市场一体化的影响及异质性分析. 世界经济,45(6):185-206.
Li Lanbing and Zhang Congcong. 2022. Effects and Heterogeneity Analysis of Highway Connectivity on Regional Market Integration. The Journal of World Economy, 45(6): 185-206.
|
柳美君,李伟平,杨斯杰,黄奕淇. 2024. 长三角区域一体化政策对科技人才流动的影响研究. 科学学研究,42(4):733-745,862.
Liu Meijun, Li Weiping, Yang Sijie, and Huang Yiqi.2024. The Effect of Regional Integration Policy on Scientific Mobility: Evidence from the Yangtze River Delta. Studies in Science of Science, 42(4): 733-745, 862.
|
Li P, Lu Y, and Wang J. 2016. Does Flattening Government improve Economic Performance? Evidence from China. Journal of Development Economics, 123: 18-37.
|
Liu Y and Shen J. 2014. Spatial Patterns and Determinants of Skilled Internal Migration in China, 2000‒2005. Papers in Regional Science, 93(4): 749-771.
|
李煜伟,倪鹏飞. 2013. 外部性、运输网络与城市群经济增长. 中国社会科学,(3):22-42,203-204.
Li Yuwei and Ni Pengfei. 2013. Externality, Transport Network and the Economic Growth of Megalopolises. Social Sciences in China, (3): 22-42, 203-204.
|
凌永辉,查婷俊. 2022. 我国地方创新集群形成与演化研究——基于产业链整合视角. 经济学家,(5):69-77.
Ling Yonghui and Zha Tingjun.2022. Research on the Formation and Evolution of Local Innovation Clusters in China—Based on the Perspective of Industrial Chain Integration. Economist, (5): 69-77.
|
刘晔,徐楦钫,马海涛. 2021. 中国城市人力资本水平与人口集聚对创新产出的影响. 地理科学,41(6):923-932.
Liu Ye, Xu Xuanfang, and Ma Haitao. 2021. Impact of Human Capital Stock and Population Concentration on Innovative Output in China. Scientia Geographica Sinica, 41(6): 923-932.
|
陆大道. 2015. 中速增长:中国经济的可持续发展. 地理科学,35(10):1207-1219.
Lu Dadao. 2015. Moderate-Speed Growth: Sustainable Development of China's Economy. Scientia Geographica Sinica, 35(10): 1207-1219.
|
Lu Y, Tao Z, and Zhu L. 2017. Identifying FDI Spillovers. Journal of International Economics, 107: 75-90.
|
吕炜,郭曼曼,王伟同. 2020. 教育机会公平与居民社会信任:城市教育代际流动的实证测度与微观证据. 中国工业经济,(2):80-99.
Lyu Wei, Guo Manman, and Wang Weitong. 2020. Equity of Educational Opportunity and Social Trust of Residents: Empirical Measurement and Micro-Evidence from Urban Intergenerational Mobility of Education. China Industrial Economics, (2): 80-99.
|
马双,汪怿. 2023. 人才政策对人才跨区域流动的影响——以长三角城市群为例. 中国人口科学,(1):101-113.
Ma Shuang and Wang Yi. 2023. The Impact of Talent Policy on Talents' Inter-City Flows: Evidence from the Yangtze River Delta Urban Agglomeration. Chinese Journal of Population Science, (1): 101-113.
|
Parent O and Lesage J P. 2008. Using the Variance Structure of the Conditional Autoregressive Spatial Specification to Model Knowledge Spillovers. Journal of Applied Econometrics, 23(2): 235-256.
|
彭向,蒋传海. 2011. 产业集聚、知识溢出与地区创新——基于中国工业行业的实证检验. 经济学(季刊),10(3):913-934.
Peng Xiang and Jiang Chuanhai. 2011. Industrial Agglomeration, Technological Spillovers and Regional Innovation: Evidences From China. China Economic Quarterly, 10(3): 913-934.
|
皮亚彬,陈耀. 2019. 大国内部经济空间布局:区位、禀赋与一体化. 经济学(季刊),18(4):1289-1310.
Pi Yabin and Chen Yao.2019. Distribution of Economic Activities in Big Country: Location, Endowments and Integration. China Economic Quarterly, 18(4): 1289-1310.
|
齐宏纲,赵美风,刘盛和,高苹,刘振. 2022. 2000—2015年中国高学历人才省际迁移的演化格局及影响机理. 地理研究,41(2):456-479.
Qi Honggang, Zhao Meifeng, Liu Shenghe, Gao Ping, and Liu Zhen.2022. Evolution Pattern and Its Driving Forces of China's Interprovincial Migration of Highly Educated Talents from 2000 to 2015. Geographical Research, 41(2): 456-479.
|
Riggs W and Hippel E V. 1994. Incentives to Innovate and the Sources of Innovation: the Case of Scientific Instruments. Research Policy, 23(4): 459-469.
|
Schultz T W. 1993. The Economic Importance of Human Capital in Modernization. Education economics, 1(1): 13-19.
|
邵帅,李欣,曹建华,杨莉莉. 2016. 中国雾霾污染治理的经济政策选择——基于空间溢出效应的视角. 经济研究,51(9):73-88.
Shao Shuai, Li Xi, Cao Jianhua, and Yang Lili. 2016. China's Economic Policy Choices for Governing Smog Pollution Based on Spatial Spillover Effects. Economic Research Journal, 51(9): 73-88.
|
邵帅,张可,豆建民. 2019. 经济集聚的节能减排效应:理论与中国经验. 管理世界,35(1):36-60,226.
Shao Shuai, Zhang Ke, and Dou Jianmin. 2019. Effects of Economic Agglomeration on Energy Saving and Emission Reduction: Theory and Empirical Evidence from China. Journal of Management World, 35(1): 36-60, 226.
|
盛科荣,王丽萍,孙威. 2021. 网络权力、知识溢出对中国城市绿色经济效率的影响. 资源科学,43(8):1509-1521.
Sheng Kerong, Wang Liping, and Sun Wei. 2021. Impacts of Network Power and Knowledge Spillovers on China's Urban Green Economic Efficiency. Resources Science, 43(8): 1509-1521.
|
宋弘,罗吉罡,蒋灵多. 2022. 城市落户门槛变化如何影响人才流动与产业创新. 财贸经济,43(5):82-95.
Song Hong, Luo Jigang, and Jiang Lingduo. 2022. The Effect of the Change in the Urban Household Registration Criteria on Talent Flow and Business Innovation. Finance and Trade Economics, 43(5): 82-95.
|
孙燕铭,谌思邈. 2021. 长三角区域绿色技术创新效率的时空演化格局及驱动因素. 地理研究,40(10):2743-2759.
Sun Yanming and Shan Simiao. 2021. The Spatio-Temporal Evolutionary Pattern and Driving Forces Mechanism of Green Technology Innovation Efficiency in the Yangtze River Delta Region. Geographical Research, 40(10): 2743-2759.
|
谭荣辉,张天琦. 2019. 高速铁路对城市用地扩张的影响——基于多期双重差分法的验证. 中国土地科学,33(11):39-50.
Tan Ronghui and Zhang Tiangi. 2019. Evaluating the Impact of High-Speed Railway on Urban Land Expansion Based on Multi-Period Difference-in-Difference Model. China Land Science, 33(11): 39-50.
|
王崇锋. 2015. 知识溢出对区域创新效率的调节机制. 中国人口·资源与环境,25(7):77-83.
Wang Chongfeng. 2015. Moderating Effects about Knowledge Spillover and Regional Innovation Efficiency. China Population, Resources and Environment, 25(7): 77-83.
|
Wang Jin. 2013. The Economic Impact of Special Economic Zones: Evidence from Chinese Municipalities. Journal of Development Economics, 101(1): 133-147.
|
王腾飞,谷人旭,马仁锋,朱雯美,苏心怡. 2021. “集聚―扩散”视角下中国区域创新极及其知识溢出区位. 经济地理,41(5):11-18,185.
Wang Tengfei, Gu Renxu, Ma Renfeng, Zhu Wenmei, and Su Xinyi. 2021. Regional Innovation Pole and Its Location of Knowledge Spillovers in China from the Perspective of "Agglomeration-Diffusion". Economic Geography, 41(5): 11-18, 185.
|
汪伟,刘玉飞,彭冬冬. 2015. 人口老龄化的产业结构升级效应研究. 中国工业经济,(11):47-61.
Wang Wei, Liu Yufei, and Peng Dongdong. 2015. Research on Effects of Population Aging on Industrial Upgrading. China Industrial Economics, (11): 47-61.
|
王秀梅,黄春晓,许宏福,杨志强. 2023. 高端人才流动的网络关联特征与影响因素分析——对长三角地区高端人才流动的观察. 热带地理,43(8):1489-1500.
Wang Xiumei, Huang Chunxiao, Xu Hongfu, and Yang Zhiqiang. 2023. Network Correlation Characteristics and Influencing Factors of High-Level Talent Flow: Observation of the High-Level Talent in the Yangtze River Delta. Tropical Geography, 43(8): 1489-1500.
|
万媛媛,王秋玉,曾刚,曹贤忠,郭艺. 2022. 高校与生物医药企业创新结网的影响机制——以长三角为例. 经济地理,42(7):146-158.
Wan Yuanyuan, Wang Qiuyu, Zeng Gang, Cao Xianzhong, and Guo Yi. 2022. Influencing Mechanism of Formation of Innovation Network between Universities and Biomedical Firms: A Case Study of Yangtze River Delta. Economic Geography, 42(7): 146-158.
|
王金杰,盛玉雪. 2020. 社会治理与地方公共研发支出——基于空间倍差法的实证研究. 南开经济研究,(1):199-219.
Wang Jinjieand Sheng Yuxue. 2020. Social Governance and Local Public R&D Expenditure: A Spatial Difference-in-Differences Analysis. Nankai Economic Studies, (1): 199-219.
|
王雨飞,倪鹏飞. 2016. 高速铁路影响下的经济增长溢出与区域空间优化. 中国工业经济,(2):21-36.
Wang Yufei and Ni Pengfei. 2016. Economic Growth Spillover and Spatial Optimization of High-Speed Railway. China Industrial Economics, (2): 21-36.
|
魏东霞,陆铭. 2021. 早进城的回报:农村移民的城市经历和就业表现. 经济研究,56(12):168-186.
Wei Dongxia and Lu Ming.2021. The Returns to Early Migration to Cities: Rural Migrants' Life Experiences and the Labor Market Performances. Economic Research Journal, 56(12): 168-186.
|
魏后凯,年猛,李玏. 2020.“十四五”时期中国区域发展战略与政策. 中国工业经济,(5):5-22.
Wei Houkai, Nian Meng, and Li Le.2020. China's Regional Development Strategy and Policy during the 14th Five-Year Plan Period. China Industrial Economics, (5): 5-22.
|
徐彬,吴茜. 2019. 人才集聚、创新驱动与经济增长. 软科学,33(1):19-23. [Xu Bin and Wu Xi. 2019. Talent Agglomeration, Innovation Driven and Economic Growth. Soft Science, 33(1): 19-23.]
|
徐军海,黄永春,邹晨. 2020. 长三角科技人才一体化发展的时空演变研究——基于社会网络分析法. 南京社会科学,(9):49-57.
Xu Junhai, Huang Yongchuan, and Zou Chen. 2020. An Analysis on Spatio-Temporal Evolution of the Integrated Development of Scientific and Technological Talents in the Yangtze River Delta: Based on Social Network Analysis. Nanjing Journal of Social Sciences, (9): 49-57.
|
许泽宁,陈子韬,甄茂成. 2022. 区域一体化政策对城市高学历人才分布的影响与作用机制——以长三角地区为例. 地理研究,41(6):1540-1553.
Xu Zening, Chen Zitao, and Zhen Maocheng.2022.The Influence Mechanism of Regional Integration Policy on the Distribution of Urban Talents:Take the Yangtze River Delta As An Example. Geographical Research, 41(6): 1540-1553.
|
宣烨,陆静,余泳泽. 2019. 高铁开通对高端服务业空间集聚的影响. 财贸经济,40(9):117-131.
Xuan Ye, Lu Jing, and Yu Yongze. 2019. The Impact of High-Speed Rail Opening on the Spatial Agglomeration of High-End Service Industry. Finance and Trade Economics, 40(9): 117-131.
|
薛成,孟庆玺,何贤杰. 2020. 网络基础设施建设与企业技术知识扩散——来自“宽带中国”战略的准自然实验. 财经研究,46(4):48-62.
Xue Cheng, Meng Qingxi, and He Xianjie. 2020. Network Infrastructure and the Diffusion of Technological Knowledge: Evidence from a Quasi-Natural Experiment. Journal of Finance and Economics, 46(4): 48-62.
|
严雅雪,齐绍洲. 2017. 外商直接投资与中国雾霾污染. 统计研究,34(5):69-81. [Yan Yaxue and Qi Shaozhou. 2017. FDI and Haze Pollution in China. Economic Research Journal, 34(5): 69-81.]
|
杨东亮,任志超,李朋骜. 2020. 中国省会城市人口密度对人才集聚的影响研究. 人口学刊,42(4):82-92.
Yang Dongliang, Ren Zhichao, and Li Peng'ao. 2020. Studies on the Influence of Population Density of China's Provincial Capital Cities on High Skill Labors Agglomeration. Population Journal, 42(4): 82-92.
|
杨帆,杜云晗. 2021. 创新与高端服务业人才集聚对经济增长影响的共轭效应研究——基于西部地区城市面板数据的分析.中国软科学,(10):82-91.
Yang Fan and Du Yunhan. 2021. Research on the Conjugate Effect of Innovation and Talent Agglomeration in High-End Service Industry on Economic Growth—Based on the Analysis of Urban Panel Data in Western China. China Soft Science, (10): 82-91.
|
尹上岗,杨山,李在军.2022.长三角地区生态城镇化空间格局及影响因素. 自然资源学报,37(6):1494-1506. [Yin Shanggang, Yang Shan, and Li Zaijun. 2022. Spatial Pattern and Influencing Factors of Ecological Urbanization in the Yangtze River Delta. Journal of Natural Resources, 37(6): 1494-1506.
|
余博,潘爱民. 2022. 数字经济、人才流动与长三角地区高质量发展. 自然资源学报,37(6):1481-1493.
Yu Bo and Pan Aimin.2022. Imbalance of Talent Flow, Digital Economy and High-Quality Development of Yangtze River Delta Economic Zone. Journal of Natural Resources, 37(6): 1481-1493.
|
袁淳,肖土盛,耿春晓,盛誉. 2021. 数字化转型与企业分工:专业化还是纵向一体化. 中国工业经济,(9):137-155.
Yuan Chun, Xiao Tusheng, Geng Chunxiao, and Sheng Yu. 2021. Digital Transformation and Division of Labor between Enterprises: Vertical Specialization or Vertical Integration. China Industrial Economics, (9): 137-155.
|
袁平红,王珍珠. 2022. 区域一体化对供应链效率的影响研究——以长三角先进制造业为例. 华东经济管理,36(7):10-20.
Yuan Pinghong and Wang Zhenzhu. 2022. The Influence of Regional Integration on Supply Chain Efficiency: A Case Study of Advanced Manufacturing Industry in Yangtze River Delta. East China Economic Management, 36(7): 10-20.
|
于涛方. 2012. 中国城市人口流动增长的空间类型及影响因素. 中国人口科学,(4):47-58,111-112.
Yu Taofang. 2012. Spatial-Temporal Features and Influential Factors of the China Urban Floating Population Growth. Chinese Journal of Population Science, (4): 47-58, 111-112.
|
于潇,王琪汇. 2021. 人口集聚、人才集聚与人力资本效率——基于流动人口的视角. 经济问题探索,(11):67-80.
Yu Xiao and Wang Qihui. 2021. Population Agglomeration, Talent Agglomeration and Human Capital Efficiency—Based on the Perspective of Migrant Population. Inquiry into Economic Issues, (11): 67-80.
|
张莉娜,倪志良. 2022. 科技人才集聚与区域创新效率——基于空间溢出与门槛效应的实证检验. 软科学,36(9):45-50.
Zhang Li'na and Ni Zhiliang. 2022. Scientific and Technological Talent Agglomeration and Regional Innovation Efficiency-Empirical Test Based on Spatial Spillover and Threshold Effect. Soft Science, 36(9): 45-50.
|
张明志,余东华,孙婷. 2019. 高铁开通对城市生产体系绿色重构的影响. 中国人口·资源与环境,29(7):41-49.
Zang Mingzhi, Yu Donghua, and Sun Ting. 2019. The Impact of High-Speed Railway's Opening on the Green Reconstruction of Urban Production System. China Population, Resources and Environment, 29(7): 41-49.
|
张学良. 2012. 中国交通基础设施促进了区域经济增长吗——兼论交通基础设施的空间溢出效应. 中国社会科学,(3):60-77,206.
Zhang Xueliang. 2012. Has Transport Infrastructure Promoted Regional Economic Growth? With an Analysis of the Spatial Spillover Effects of' Transport Infrastructure. Social Sciences in China, (3): 60-77, 206.
|
张勋,乔坤元. 2016. 中国区域间经济互动的来源:知识溢出还是技术扩散? 经济学(季刊),15(4):1629-1652.
Zhang Xun, and Qiao Kunyuan. 2016. Regional Economic Interactions in China: Knowledge Spillover or Technological Diffusion? China Economic Quarterly, 15(4): 1629-1652.
|
张杨,袁宝龙,郑晶晶,邓亚玲. 2024. 策略性回应还是实质性响应?碳排放权交易政策的企业绿色创新效应. 南开管理评论,27(3):129-140.
Zhang Yang, Yuan Baolong, Zheng Jingjing, and Deng Yaling. 2024. Strategic Response or Substantive Response? The Effect of China's Carbon Emissions Trading Policy on Enterprise Green Innovation. Nankai Business Review, 27(3):129-140.
|
张治国,欧国立. 2022. 高铁网络、虹吸效应与城市群引资. 经济问题,(2):34-41,78.
Zhang Zhiguo and Ou Guoli. 2022. High Speed Rail Network, Siphon Effect and FDI Inflow for Urban Agglomeration. On Economic Problems, (2): 34-41, 78.
|
赵勇,白永秀. 2009. 知识溢出:一个文献综述. 经济研究,44(1):144-156.
Zhao Yong and Bai Yongxiu. 2009. Knowledge Spillovers:A Survey of the Literature. Economic Research Journal, 44(1): 144-156.
|
中共中央、国务院. 2019. 长江三角洲区域一体化发展规划纲要.(2019-12-01)[2024-08-05]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm.
The CPC Central Committee and the State Council.2019. Outline of Development Plan for Regional Integration in the Yangtze River Delta. (2019-12-01) [2024-08-05]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm.
|
钟腾,罗吉罡,汪昌云. 2021. 地方政府人才引进政策促进了区域创新吗?——来自准自然实验的证据. 金融研究,(5):135-152.
Zhong Teng, Luo Jigang, and Wang Changyun. 2021. Do Local Government Talent Introduction Policies Promote Regional Innovation? Evidence from a Quasi-Natural Experiment. Journal of Financial Research, (5): 135-152.
|
周力,沈坤荣. 2020. 国家级城市群建设对绿色创新的影响. 中国人口·资源与环境,30(8):92-99.
Zhou Li and Shen Kunrong. 2020. National City Group Construction and Green Innovation. China Population, Resources and Environment, 30(8): 92-99.
|
朱瑾,许智颖,刘文政. 2022. 基于非对称创新理论的中国区域绿色技术创新实现路径. 中国人口·资源与环境,32(2):128-139.
Zhu Jin, Xu Zhiying, and Liu Wenzheng. 2022. China's Regional Green Technological Innovation and Realization Path Based on Asymmetric Innovation Theory. China Population, Resources and Environment, 32(2): 128-139.
|
/
〈 |
|
〉 |