基于授权发明专利数据的广州都市圈创新产出空间格局演化研究
单卓然(1987—),男,黑龙江哈尔滨人,教授,博士生导师,博士,主要从事城市群都市圈复杂网络及空间协同规划、大城市空间结构及其数智化规划调控研究,(E-mail)371760860@qq.com; |
收稿日期: 2024-03-16
修回日期: 2024-05-09
网络出版日期: 2024-12-11
基金资助
国家自然科学基金面上项目(52278062)
科技部重点研发计划课题(2022YFC3800103)
中央高校基本科研业务费专项资金资助(2024WKYXQN017)
Research on the Pattern Evolution of Innovation Output Space in Guangzhou Metropolitan Area Based on Authorized Invention Patent Data
Received date: 2024-03-16
Revised date: 2024-05-09
Online published: 2024-12-11
以广州都市圈授权发明专利数据为基础,综合运用全局空间自相关、核密度分析、缓冲区分析等空间方法,探讨都市圈创新产出空间的总体演化格局,以及企业、科研机构、个人3类创新产出空间的演化特征及其影响因素。结果表明:1)创新产出空间的格局演化大体遵循“率先在中心城市的主城核心区集聚——在都市圈次一级城市产生创新产出增长点——形成若干创新产出跨界一体化区域”的规律。2)企业创新产出空间持续向具有明确边界的产业园区及科技园区集聚,都市圈内园区的广泛建设带动企业创新产出空间的分散化发展;科研机构创新产出空间始终高度集中在广州市主城核心区,并伴随都市圈内大学城的建设而扩展;个人创新产出从“爆炸式的空间离散”转变为“有组织的空间收敛”,城市轨道交通对个人创新产出的吸附效应日益显著。3)3类创新产出始终具有空间邻近性特征,其中企业创新是驱动都市圈外围地区创新扩散的主要动力。4)区域创新产出受到创新环境和创新投入的双重影响。其中,政府支持是影响3类创新产出最为关键的驱动力量。总体而言,都市圈内创新产出空间的总体演化格局通常遵循“单核―扩张―多核”的发展规律,企业、科研机构及个人创新产出的空间演化与区域产学研中心及重大交通设施的建设密切相关。
单卓然 , 刘思缌 , 袁满 , 朱俊青 . 基于授权发明专利数据的广州都市圈创新产出空间格局演化研究[J]. 热带地理, 2024 , 44(12) : 2263 -2277 . DOI: 10.13284/j.cnki.rddl.20240148
As areas with high population and economic concentration, metropolitan areas are important geographical units for innovation transformation and radiation. However, studies on innovation space have mainly focused on the entire country, urban agglomerations, provinces, and cities, with less attention paid to metropolitan areas as important scales of scientific and technological innovation. In addition, existing studies often emphasize the overall characteristics of the innovation output space, neglecting diverse innovation subjects such as enterprises, scientific research institutions, and individuals. Based on the data of authorized invention patents in the Guangzhou metropolitan area, this study applied spatial research methods, such as spatial autocorrelation, kernel density analysis, and buffer analysis, to explore the overall evolution pattern of innovation output space in the metropolitan area as well as the evolution characteristics and influencing factors of the three types of innovation outputs, namely enterprises, scientific research institutions, and individuals, to provide a scientific basis for the development of innovation space and the optimization of innovation resources. The results show that: (1) the evolution of innovation output space generally follows the pattern of "gathering in the core area of the main district of the central city in a metropolitan region, generating innovation output growth points in the secondary cities and forming a number of innovation output cross-border integration areas." (2) The innovation output space of enterprises continues to cluster toward industrial parks and technology parks with clear boundaries, and the extensive construction of parks has driven the decentralized development of innovation output space of enterprises; The innovation output space of scientific research institutions, with strong stability, has always been highly concentrated in the core area of the main city of Guangzhou and has expanded with the construction of university towns within the metropolitan area; The individual innovation output has shifted from "explosive spatial dispersion" to "organized spatial convergence", and the adsorption effect of urban rail transit on individual innovation output is becoming increasingly significant. (3) The three types of innovation outputs always have spatial proximity characteristics, and enterprise innovation is the main driving force for innovation diffusion in the periphery of metropolitan areas. (4) Regional innovation output is influenced by both the innovation environment and innovation inputs, among which government support is the most critical driving force affecting the three types of innovation outputs. Economic base and location conditions are important pillars for the three types of innovation outputs, while the degree of openness has a greater contribution to enterprise innovation output by facilitating technological spillovers and knowledge flows. In general, the overall spatial evolution of innovation output in the metropolitan area follows the development pattern of "single core-expansion-multicore," with the spatial evolution of the three types of innovation outputs being closely related to the construction of regional industry-university-research centers and major transportation facilities.
图4 2001、2011、2021 年广州都市圈创新产出核密度分布与空间结构示意Fig.4 Kernel density distribution and spatial structure of innovation output in Guangzhou metropolitan area in 2001, 2011 and 2021 |
图4 2001、2011、2021年广州都市圈创新产出核密度分布与空间结构示意Fig.4 Kernel density distribution and spatial structure of innovation output in Guangzhou metropolitan area in 2001, 2011 and 2021 |
年份 | 核密度分布 | 空间结构 |
2001 | ![]() | ![]() |
2011 | ![]() | ![]() |
2021 | ![]() | ![]() |
图5 2001、2011、2021 年广州都市圈3 类创新产出核密度分布Fig.5 Kernel density distribution of three types of innovation output in the Guangzhou metropolitan area in 2001, 2011 and 2021 |
图5 2001、2011、2021年广州都市圈3类创新产出核密度分布Fig.5 Kernel density distribution of three types of innovation output in the Guangzhou metropolitan area in 2001, 2011 and 2021 |
创新主体 | 2001年 | 2011年 | 2021年 |
企 业 | ![]() | ![]() | ![]() |
科 研 机 构 | ![]() | ![]() | ![]() |
个 人 | ![]() | ![]() | ![]() |
图7 2001、2011、2021 年广州都市圈3 类创新产出空间分布Fig.7 Spatial distribution of three types of innovation output in Guangzhou metropolitan area in 2001, 2011 and 2021 |
图7 2001、2011、2021年广州都市圈3类创新产出空间分布Fig.7 Spatial distribution of three types of innovation output in Guangzhou metropolitan area in 2001, 2011 and 2021 |
创新主体 | 2001年 | 2011年 | 2021年 |
企 业 | ![]() | ![]() | ![]() |
科 研 机 构 | ![]() | ![]() | ![]() |
个 人 | ![]() | ![]() | ![]() |
表1 三类创新产出影响因素分析的回归结果Table 1 Regression results of the analysis of influencing factors for three types of innovation output |
变量 | lnY 1 | lnY 2 | lnY 3 |
---|---|---|---|
lnX 1(经济基础) | 0.583* | 1.612*** | 0.854** |
lnX 2(开放程度) | 0.565*** | 0.299 | 0.032 |
lnX 3(区位条件) | 0.239* | 0.752*** | 0.871*** |
lnX 4(政府支持) | 1.319*** | 4.850*** | 2.862*** |
lnX 5(研发强度) | 0.274 | 0.712 | 0.658 |
常数项 | -3.334* | -18.475*** | -10.259*** |
R 2 | 0.827 | 0.867 | 0.834 |
调整R 2 | 0.776 | 0.828 | 0.785 |
|
单卓然:选题提出,研究方案设计,论文主体撰写;
刘思缌:数据收集与分析,图件制作,论文后期修改;
袁 满:研究过程指导,修改意见提出;
朱俊青:文献收集与整理,论文规范修改。
Adler P, Florida R, King K, and Mellander C. 2019. The City and High-Tech Startups: The Spatial Organization of Schumpeterian Entrepreneurship. Cities, 87: 121-130.
|
Adler P and Florida R. 2021. The Rise of Urban Tech: How Innovations for Cities Come From Cities. Regional Studies, 55(10/11): 1787-1800.
|
Buzard K, Carlino G A, Hunt R M, Carr J K, and Smith T E. 2017. The Agglomeration of American R&D Labs. Journal of Urban Economics, 101: 14-26.
|
陈清怡,千庆兰,姚作林. 2021. 广东省城市创新发展水平及其网络结构演化. 经济地理,41(4):38-47.
Chen Qingyi, Qian Qinglan, and Yao Zuolin. 2021. Urban Innovation Development Level and Network Structure Evolution in Guangdong Province. Economic Geography, 41(4): 38-47.
|
陈清怡,千庆兰,姚作林. 2022. 城市创新空间格局与地域组织模式——以北京、深圳与上海为例. 城市规划,46(10):25-38.
Chen Qingyi, Qian Qinglan, and Yao Zuolin. 2022. Spatial Patterns and Regional Organizational Modes of Urban Innovation: Case Studies of Beijing, Shenzhen, and Shanghai. City Planning Review, 46(10): 25-38.
|
陈依曼,李立勋,符天蓝. 2020. 中国城市创新能力及其影响因素的空间分异——基于GWR模型的实证. 热带地理,40(2):323-334.
Chen Yiman, Li Lixun, and Fu Tianlan. 2020. Spatial Heterogeneity in Chinese Urban Innovation Capabilities and Its Determinants: Approach Based on the Geographically Weighted Regression Model. Tropical Geography, 40(2): 323-334.
|
褚晨晨. 2022. 济南城市创新空间分布特征及影响因素研究. 济南:山东建筑大学.
Zhu Chenchen. 2022. Research on the Distribution Characteristics and Influencing Factors of Urban Innovation Space in Ji'nan. Ji'nan: Shandong Jianzhu University.
|
丛海彬,邹德玲,蒋天颖. 2015. 浙江省区域创新平台空间分布特征及其影响因素. 经济地理,35(1):112-118.
Cong Haibin, Zhou Deling, and Jiang Tianying. 2015. The Spatial Distribution and Elements of Regional Innovation Platforms in Zhejiang Province. Economic Geography, 35(1): 112-118.
|
董会忠,李旋,张仁杰. 2021. 粤港澳大湾区绿色创新效率时空特征及驱动因素分析. 经济地理,41(5):134-144.
Dong Huizhong, Li Xuan, and Zhang Renjie. 2021. Spatial-Temporal Characteristics and Driving Factors of Green Innovation Efficiency in Guangdong-Hong Kong-Macao Greater Bay Area. Economic Geography, 41(5): 134-144.
|
段德忠,杜德斌,刘承良. 2015. 上海和北京城市创新空间结构的时空演化模式. 地理学报,70(12):1911-1925.
Duan Dezhong, Du Debin, and Liu Chengliang. 2015. Spatial-Temporal Evolution Mode of Urban Innovation Spatial Structure: A Case Study of Shanghai and Beijing. Acta Geographica Sinica, 70(12): 1911-1925.
|
Feldman M P and Audretsch D B. 1999. Innovation in Cities: Science-Based Diversity, Specialization and Localized Competition. European Economic Review, 43(2): 409-429.
|
Florida R and Mellander C. 2016. Rise of the Startup City: The Changing Geography of the Venture Capital Financed Innovation. California Management Review, 59(1): 14-38.
|
Florida R, Adler P, and Mellander C. 2017. The City as Innovation Machine. Regional Studies, 51(1): 86-96.
|
Florida R and King K M. 2018. Urban Start-Up Districts: Mapping Venture Capital and Start-Up Activity Across ZIP Codes. Economic Development Quarterly, 32(2): 99-118.
|
Forman C, Goldfarb A, and Greenstein S. 2016. Agglomeration of Invention in the Bay Area: Not just ICT. American Economic Review, 106(5): 146-151.
|
方忠权. 2013. 广州会展企业空间集聚特征与影响因素. 地理学报,68(4):464-476.
Fang Zhongquan. 2013. The Agglomeration Characteristics and Influencing Factors of Exhibition Enterprises in Guangzhou. Acta Geographica Sinica, 68(4): 464-476.
|
管曼玲,孙世界. 2023. 城市创新空间的集聚特征及影响因素研究——以南京主城为例. 城市规划,47(12):21-31.
Guan Manling and Sun Shijie. 2023. Agglomeration Characteristics and Influencing Factors of Urban Innovation Space: A Case Study of Nanjing Main Cityi. City Planning Review, 47(12): 21-31.
|
广东省人民政府. 2023. 广州都市圈发展规划. (2023-10-25)[2023-11-22]. https://www.gd.gov.cn/attachment/0/538/538477/4303566.pdf.
Guangdong Provincial People's Government. 2023. Guangzhou Metropolitan Area Development Plan. (2023-10-25)[2023-11-22]. https://www.gd.gov.cn/attachment/0/538/538477/4303566.pdf.
|
广东省人民代表大会常务委员会. 2011. 广东省自主创新促进条例. (2011-11-30)[2023-11-22]. https://gdstc.gd.gov.cn/msg/image_new/wenjian/2016/09/20160914zcc01.pdf.
Standing Committee of Guangdong Provincial People's Congress. 2010. Regulations of Guangdong Province on the Promotion of Independent Innovation. (2011-11-30) [2023-11-22]. https://gdstc.gd.gov.cn/msg/image_new/wenjian/2016/09/20160914zcc01.pdf.
|
Hagerstrand T. 1967. Innovation Diffusion as a Spatial Process. Chicago: University of Chicago Press.
|
浩飞龙,杨宇欣,王士君. 2020. 城市舒适性视角下长春市创新产出的空间特征及影响因素. 人文地理,35(5):61-68,129.
Hao Feilong, Yang Yuxin, and Wang Shijun. 2020. Spatial Characteristics and Dynamic Change of Innovation Outputs in Changchun from the Perspective of Urban Amenities. Human Geography, 35(5): 61-68, 129.
|
蒋天颖. 2014. 浙江省区域创新产出空间分异特征及成因. 地理研究,33(10):1825-1836.
Jiang Tianying. 2014. Spatial Differentiation and Its Influencing Factors of Regional Innovation Output in Zhejiang Province. Geographical Research, 33(10): 1825-1836.
|
兰海霞,赵雪雁. 2020. 中国区域创新效率的时空演变及创新环境影响因素. 经济地理,40(2):97-107.
Lan Haixia and Zhao Xueyan. 2020. Spatial-Temporal Evolution and Innovation Environment Factors of Regional Innovation Efficiency in China. Economic Geography, 40(2): 97-107.
|
李经成,黄春晓. 2022. 创新型企业城市内部空间分布及组织逻辑——以南京市为例. 经济地理,42(7):93-105.
Li Jingcheng and Huang Chunxiao. 2022. Spatial Distribution and Organizational Logic of Innovative Enterprises in Cities: Take Nanjing City for an Example. Economic Geography, 42(7): 93-105.
|
李凌月,张啸虎,罗瀛. 2019. 基于创新产出的城市科技创新空间演化特征分析——以上海市为例. 城市发展研究,26(6):87-92,33.
Li Lingyue, Zhang Xiaohu, and Luo Ying. 2019. Research on the Evolution Characteristics of Innovation Space from an Output Perspective: A Case Study of Shanghai. Urban Development Studies, 26(6): 87-92, 33.
|
李迎成. 2022. 基于创新活动分布视角的城市创新空间结构测度与演变特征. 城市规划学刊,(1):74-80.
Li Yingcheng. 2022. The Measurement and Evolution Characteristics of Spatial Structure of Urban Innovation: The Perspective of Innovation Activity Distribution. Urban Planning Forum, (1): 74-80.
|
刘汉初,樊杰,周侃. 2018. 中国科技创新发展格局与类型划分——基于投入规模和创新效率的分析. 地理研究,37(5):910-924.
Liu Hanchu, Fan Jie, and Zhou Kan. 2018. Development Pattern of Scientific and Technological Innovation and Typical Zone in China Based on the Analysis of Scale and Efficiency. Geographical Research, 37(5): 910-924.
|
刘娇,黄显峰,方国华,陈颖钦. 2018. 基于GIS缓冲区功能的塔里木河中游植被指数时空变化分析. 干旱区研究,35(1):171-180.
Liu Jiao, Huang Xianfeng, Fang Guohua, and Chen Yingqing. 2018. Spatiotemporal Variation of NDVI in the Middle Reaches of the Tarim River Based on GIs Buffer Function. Arid Zone Research, 35(1): 171-180.
|
刘青,李贵才,仝德,栾晓帆. 2011. 基于ESDA的深圳市高新技术企业空间格局及影响因素. 经济地理,31(6):926-933.
Lliu Qing, Li Guicai, Tong De, and Luan Xiaofan. 2011. The Spatial Pattern and Influence Factors of High-Tech Firms in Shenzhen Based on ESDA. Economic Geography, 31(6): 926-933.
|
刘树峰,杜德斌,覃雄合,何舜辉. 2018. 中国沿海三大城市群企业创新时空格局与影响因素. 经济地理,38(12):111-118.
Liu Shufeng, Du Debin, Qin Xionghe, and He Shunhui. 2018. Spatial-Temporal Pattern and Influence Factors of Enterprise Innovation in Three Chinese Coastal Urban Agglomerations. Economic Geography, 38(12): 111-118.
|
马海涛,黄晓东,李迎成. 2018. 粤港澳大湾区城市群知识多中心的演化过程与机理. 地理学报,73(12):2297-2314.
Ma Haitao, Huang Xiaodong, and Li Yingcheng. 2018. The Evolution and Mechanisms of Megalopolitan Knowledge Polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area. Acta Geographica Sinica, 73(12): 2297-2314.
|
马双,曾刚. 2020. 上海市创新集聚的空间结构、影响因素和溢出效应. 城市发展研究,27(1):19-25.
Ma Shuang and Zeng Gang. 2020. Spatial Structure, Influencing Factors and Spillover Effect of Innovatior Agglomeration in Shanghai. Urban Development Studies, 27(1): 19-25.
|
Rammer C, Kinne J, and Blind K. 2020. Knowledge Proximity and Firm Innovation: A Microgeographic Analysis for Berlin. Urban Studies, 57(5): 996-1014.
|
Schumpeter J A. 1934. The Theory of Economic Development. Cambridge: Harvard University Press.
|
孙瑜康,孙铁山,席强敏. 2017. 北京市创新集聚的影响因素及其空间溢出效应. 地理研究,36(12):2419-2431.
Sun Yukang, Sun Tieshan, and Xi Qiangmin. 2017. Influence Factors and Spillover Effect of the Innovation Agglomeration in Beijing. Geographical Research, 36(12): 2419-2431.
|
谭俊涛,张平宇,李静. 2016. 中国区域创新绩效时空演变特征及其影响因素研究. 地理科学,36(1):39-46.
Tan Juntao, Zhang Pingyu, and Li Jing. 2016. Spatio-Temporal Characteristics of Regional Innovation Performance and Its Influencing Factors in China. Scientia Geographica Sinica, 36(1): 39-46.
|
滕堂伟,方文婷. 2017. 新长三角城市群创新空间格局演化与机理. 经济地理,37(4):66-75.
Teng Tangwei and Fang Wenting. 2017. The Evolution of Innovation Space and Its Mechanism in Yangtze River Delta Urban Agglomeration. Economic Geography, 37(4): 66-75.
|
王蓓,刘卫东,陆大道. 2011. 中国大都市区科技资源配置效率研究——以京津冀、长三角和珠三角地区为例. 地理科学进展,30(10):1233-1239.
Wang Bei, Liu Weidong, and Lu Dadao. 2011. Allocation Efficiency of Science and Technology Resources in Jing-JinJi,Yangtze River Delta and Pearl River Delta Regions. Progress in Geography, 30(10): 1233-1239.
|
王承云,孙飞翔. 2017. 长三角城市创新空间的集聚与溢出效应. 地理研究,36(6):1042-1052.
Wang Chengyun and Sun Feixiang. 2017. Spatial Agglomeration and Spillover Effects of Urban Innovation in Yangtze River Delta. Geographical Research, 36(6): 1042-1052.
|
王纪武,孙滢,林倪冰. 2020. 城市创新活动分布格局的时空演化特征及对策——以杭州市为例. 城市发展研究,27(1):12-18,29.
Wang Jiwu, Sun Ying, and Lin Nibing. 2020. Spatial-Temporal Evolution Characteristics and Countermeasures of UrbanInnovation Activities Distribution Pattern: A Case Study of Hangzhou. Urban Development Studies, 27(1): 12-18, 29.
|
王腾飞,谷人旭,马仁锋,朱雯美,苏心怡. 2021. “集聚—扩散”视角下中国区域创新极及其知识溢出区位. 经济地理,41(5):11-18,185.
Wang Tengfei, Gu Renxu, Ma Renfeng, Zhu Wenmei, and Su Xinyi. 2021. Regional Innovation Pole and Its Location of Knowledge Spillovers in China from the Perspective of "Agglomeration-Diffusion". Economic Geography, 41(5): 11-18, 185.
|
王伟,朱小川,梁霞. 2020. 粤港澳大湾区及扩展区创新空间格局演变及影响因素分析. 城市发展研究,27(2):16-24.
Wang Wei, Zhu Xiaochuan, and Liang Xia. 2020. Evolution of Innovation Spatial Patterns and Analysis of Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area. Urban Development Studies, 27(2): 16-24.
|
杨明海,张红霞,孙亚男. 2017. 七大城市群创新能力的区域差距及其分布动态演进. 数量经济技术经济研究,34(3):21-39.
Yang Minghai, Zhang Hongxia, and Sun Ya'nan. 2017. Regional Disparity and Distributional Dynamic Evolution of the Innovation Ability in Seven Chinese Megalopolises. The Journal of Quantitative & Technical Economics, 34(3): 21-39.
|
尹稚,卢庆强,吕晓荷,王强. 2021. 中国都市圈发展报告2021. 北京:清华大学出版社.
Yin Zhi, Lu Qingqiang, Lyu Xiaohe, Wang Qiang. 2021. China Metropolitan Area Development Report 2021. Beijing: Science Press.
|
张衔春,胡国华,单卓然,李禕. 2021. 中国城市区域治理的尺度重构与尺度政治. 地理科学,41(1):100-108.
Zhang Xianchun, Hu Guohua, Shan Zhuoran, and Li Yi. 2021. Rescaling and Politics of Scale in China's City-Regional Governance. Scientia Geographica Sinica, 41(1): 100-108.
|
张衔春,冯琰玮,徐元朔. 2023. 粤港澳大湾区区域合作与城市要素集聚演变及交互机制. 中国人口·资源与环境,33(6):138-150.
Zhang Xianchun, Feng Yanwei, and Xu Yuanshuo. 2023. Evolution and Interaction between Regional Cooperation and Urban Factor Agglomeration in the Guangdong-Hong Kong-Macao Greater Bay Area. China Population, Resources and Environment, 33(6): 138-150.
|
/
〈 |
|
〉 |