基于小波变换和VCPA-GA算法的人参果叶片叶绿素含量高光谱估算
郭金锋(2001—),男,河南西华人,硕士研究生,主要从事农业遥感研究,(E-mail)g3163937146@163.com; |
收稿日期: 2024-04-30
修回日期: 2024-07-02
网络出版日期: 2025-03-14
基金资助
伊犁师范大学科研项目(2022YSYY003)
伊犁哈萨克自治州科技计划项目(YJC2024A05)
第三次新疆综合科学考察(2022xjkk20220405)
Hyperspectral Estimation of Chlorophyll Content in Ginseng Fruit Leaves Based on Wavelet Transform and VCPA-GA Algorithm
Received date: 2024-04-30
Revised date: 2024-07-02
Online published: 2025-03-14
叶片叶绿素含量(Leaf Chlorophyll Contents, LCCs)作为植物重要的生理生化参数之一,其含量的变化直接或间接影响植物的生长发育。通过使用高光谱遥感技术对人参果LCC进行快速无损监测,有利于实现精准农业的发展。文章以人参果叶片高光谱数据和对应的人参果LCC为数据集,使用离散小波变换(Discrete Wavelet Transform, DWT)算法,提取人参果叶片高光谱数据0~10层低频小波系数,将0~10层光谱数据集与对应的人参果LCC进行Pearson相关性分析,然后将变量组合集群分析(Variable Combination Population Analysis, VCPA)与遗传算法(Genetic Algorithm, GA)结合,使用VCPA-GA算法提取人参果全谱和各分解层敏感波段,通过4种机器学习模型构建人参果LCC的估测模型。结果表明,DWT能提高人参果LCC的预测性能,在4种机器学习模型中,4层BP-AdaBoost模型的预测性能最好,R 2达到0.919,MAPE=2.090%,RMSE=1.453,RPD=3.900,其次PSO-BPNN回归模型的预测性能也表现出较高的准确性。文章表明,人参果高光谱数据经DWT-VCPA-GA算法处理后,使用4层低频小波系数重组的光谱数据构建BP-AdaBoost回归预测模型时对人参果LCC的估算性能最好。
郭金锋 , 张志从 , 吾木提·艾山江艾山江 , 周忠晔 , 续文宇 , 玉苏甫·艾海买江 . 基于小波变换和VCPA-GA算法的人参果叶片叶绿素含量高光谱估算[J]. 热带地理, 2025 , 45(3) : 514 -526 . DOI: 10.13284/j.cnki.rddl.20240280
Leaf Chlorophyll Content (LCC) is vital for both direct and indirect plant growth and development. Accurate monitoring of LCC in ginseng fruits provides essential data for assessing their photosynthetic and nutritional status, which is beneficial for the development of precision agriculture. Traditional chemical analyses in laboratories require a large number of samples, which are not only time-consuming and destructive, but also fail to meet the precise management needs of extensive fields. Although some handheld devices can measure the leaf LCC accurately and quickly without causing damage, they cannot provide large-scale information. Hyperspectral remote sensing is widely applied for rapid and non-destructive LCC monitoring because of its strong continuity and abundant data. In this study, we used ginseng fruit leaf hyperspectral data and the corresponding LCCs as datasets. We applied the Discrete Wavelet Transform (DWT) to extract the low-frequency coefficients from the 0-10 layers of the hyperspectral data. We then conducted a Pearson correlation analysis on the 0-10 layer spectral datasets and their corresponding LCCs. We combined Variable Combination Pattern Analysis (VCPA) with Genetic Algorithm (GA), employing the combined VCPA-GA algorithm to extract sensitive bands from the full spectrum and each decomposed layer of the ginseng fruit leaf. Finally, we established estimation models for the ginseng fruit LCC using the Back Propagation Neural Network (BPNN), GA-BPNN, Particle Swarm Optimization (PSO)-BPNN, and BP-AdaBoost neural network models. Among the four machine-learning models, the BP-AdaBoost neural network exhibited the best overall predictive performance. The predictive performance of the PSO-BPNN model was similar to that of the BPNN model, whereas the GA-BPNN model exhibited the lowest predictive performance. This study shows: (1) The 1-5 layer DWT spectra accurately reflect the overall characteristics of the original spectrum, with a decrease in correlation at each layer beyond the fifth layer, and the spectra beyond the seventh layer no longer represent the overall features of the original spectrum. This is because the wavelet transform process has some errors that increase with the number of decomposition layers. (2) The VCPA-GA hybrid variable selection algorithm merges the strengths of the VCPA and GA, addressing the tendency of the VCPA to select fewer variables and overcoming GA's limitations in handling many variables which can lead to overfitting, providing a theoretical basis for estimating ginseng fruit LCC using hyperspectral remote sensing. (3) Among the four machine-learning models, predictions from to 1-2 and 6-7 layers were generally lower than those of the 0 layer, while predictions from the 3–5 layers are higher, showing an overall trend of initial increase followed by a decrease as the number of wavelet decomposition layers increased. (4) Ginseng fruit leaf hyperspectral data processed by the DWT-VCPA-GA algorithm with a 4-layer DWT spectrum yielded the best predictive performance in the BP-AdaBoost regression model, with R 2=0.919, mean absolute percentage error = 2.090%, and relative percentage difference = 3.900. (5) After optimizing the BPNN regression model with various algorithms, only some optimized models improved their predictive performance and accuracy to a certain extent, making the choice of the right optimization algorithm crucial for model improvement.
表 1 基于0~7层高光谱数据集的VCPA-GA混合策略研究结果Table 1 Results off VCPA-GA hybrid strategies based on 0~7 order hyperspectral data sets |
分解层数 | Pb | Nb | Tb | r max | 对应波段/nm |
---|---|---|---|---|---|
0 | 311 | 172 | 483 | 0.584 14 | 705 |
1 | 172 | 139 | 311 | 0.584 08 | 705 |
2 | 172 | 139 | 311 | 0.584 01 | 705 |
3 | 172 | 139 | 311 | 0.584 33 | 705 |
4 | 174 | 138 | 312 | 0.577 92 | 707 |
5 | 183 | 149 | 332 | 0.587 22 | 699 |
6 | 220 | 128 | 348 | 0.438 47 | 674 |
7 | 206 | 139 | 345 | 0.423 06 | 656 |
表2 基于高光谱数据集的模型精度指标结果Table 2 Results of Model Accuracy Index Based on Hyperspectral Data Set |
分解层数 | 模型 | 训练集 | 测试集 | RPD/ (µg·cm-2) | 筛选变量 个数/个 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R 2 | MAE/ (µg·cm-2) | RMSE/ (µg·cm-2) | R 2 | MAE/ (µg·cm-2) | MAPE/% | RMSE/ (µg·cm-2) | |||||
0 | BPNN | 0.838 | 1.265 | 1.915 | 0.798 | 1.836 | 3.520 | 2.297 | 2.282 | 57 | |
PSO-BPNN | 0.851 | 1.241 | 1.836 | 0.829 | 1.552 | 3.049 | 2.112 | 2.573 | |||
GA-BPNN | 0.830 | 1.286 | 1.961 | 0.799 | 1.550 | 3.118 | 2.289 | 2.376 | |||
BP-AdaBoost | 0.878 | 0.826 | 1.662 | 0.896 | 1.155 | 2.161 | 1.642 | 3.527 | |||
1 | BPNN | 0.836 | 0.878 | 1.928 | 0.774 | 1.629 | 3.139 | 2.428 | 2.335 | 47 | |
PSO-BPNN | 0.799 | 1.631 | 2.134 | 0.781 | 1.857 | 3.519 | 2.389 | 2.449 | |||
GA-BPNN | 0.809 | 1.280 | 2.077 | 0.757 | 1.737 | 3.499 | 2.519 | 2.034 | |||
BP-AdaBoost | 0.881 | 0.927 | 1.641 | 0.877 | 1.269 | 2.381 | 1.789 | 2.988 | |||
2 | BPNN | 0.853 | 0.673 | 1.823 | 0.807 | 1.555 | 3.111 | 2.244 | 2.760 | 51 | |
PSO-BPNN | 0.841 | 1.060 | 1.894 | 0.808 | 1.682 | 3.256 | 2.236 | 2.382 | |||
GA-BPNN | 0.877 | 0.910 | 1.667 | 0.795 | 1.589 | 3.042 | 2.312 | 2.335 | |||
BP-AdaBoost | 0.890 | 0.681 | 1.575 | 0.881 | 1.147 | 2.256 | 1.757 | 3.222 | |||
3 | BPNN | 0.834 | 1.081 | 1.936 | 0.834 | 1.216 | 2.523 | 2.078 | 2.514 | 21 | |
PSO-BPNN | 0.850 | 1.010 | 1.841 | 0.826 | 1.421 | 2.855 | 2.130 | 2.630 | |||
GA-BPNN | 0.820 | 1.132 | 2.017 | 0.801 | 1.642 | 3.281 | 2.275 | 2.356 | |||
BP-AdaBoost | 0.870 | 0.779 | 1.715 | 0.881 | 1.161 | 2.347 | 1.758 | 3.345 | |||
4 | BPNN | 0.855 | 0.658 | 1.813 | 0.849 | 1.337 | 2.616 | 1.983 | 3.195 | 42 | |
PSO-BPNN | 0.867 | 0.939 | 1.735 | 0.858 | 1.314 | 2.406 | 1.921 | 2.663 | |||
GA-BPNN | 0.880 | 0.986 | 1.647 | 0.835 | 1.662 | 3.171 | 2.076 | 2.558 | |||
BP-AdaBoost | 0.880 | 0.704 | 1.645 | 0.919 | 1.113 | 2.090 | 1.453 | 3.900 | |||
5 | BPNN | 0.863 | 1.025 | 1.763 | 0.851 | 1.517 | 2.840 | 1.970 | 2.729 | 27 | |
PSO-BPNN | 0.851 | 1.036 | 1.837 | 0.840 | 1.303 | 2.696 | 2.041 | 2.547 | |||
GA-BPNN | 0.843 | 1.150 | 1.887 | 0.828 | 1.378 | 2.776 | 2.119 | 2.436 | |||
BP-AdaBoost | 0.857 | 0.797 | 1.796 | 0.856 | 1.172 | 2.369 | 1.937 | 2.911 | |||
6 | BPNN | 0.852 | 0.885 | 1.829 | 0.793 | 1.936 | 3.792 | 2.325 | 3.144 | 24 | |
PSO-BPNN | 0.845 | 0.791 | 1.871 | 0.791 | 1.716 | 3.360 | 2.334 | 2.954 | |||
GA-BPNN | 0.809 | 1.203 | 2.081 | 0.745 | 2.005 | 3.939 | 2.579 | 2.960 | |||
BP-AdaBoost | 0.856 | 0.801 | 1.806 | 0.814 | 1.867 | 3.632 | 2.201 | 3.666 | |||
7 | BPNN | 0.786 | 1.132 | 2.200 | 0.768 | 1.969 | 3.915 | 2.460 | 2.749 | 65 | |
PSO-BPNN | 0.788 | 1.080 | 2.192 | 0.741 | 2.156 | 4.176 | 2.601 | 3.143 | |||
GA-BPNN | 0.763 | 1.247 | 2.316 | 0.695 | 2.426 | 4.723 | 2.821 | 2.137 | |||
BP-AdaBoost | 0.823 | 0.970 | 2.002 | 0.786 | 1.981 | 3.915 | 2.361 | 2.899 |
郭金锋:完成高光谱数据的测量,参与叶绿素含量的测定,进行数据整理与分析,论文撰写与修改;
张志从:完成实验设计,上传测量数据,进行叶绿素含量的测定与高光谱数据的整理;
吾木提·艾山江:研究问题和实验流程设计,提供算法支撑,指导论文撰写与数据分析;
周忠晔:完成高光谱数据的测量与数据整理工作,参与叶绿素含量的测定;
续文宇、玉苏甫·艾海买江:完成叶绿素含量的测定。
白丽. 2020. 基于高光谱数据的玉米LAI和叶绿素含量遥感反演方法的研究. 石河子:石河子大学.
Bai Li. 2020. Study on Remote Sensing Inversion of LAI and Chlorophyll Content in Maize Based on Hyperspectral Data. Shihezi: Shihezi University.
|
陈红艳,赵庚星,李希灿,王向锋,李玉玲. 2013. 基于DWT-GA-PLS的土壤碱解氮含量高光谱估测方法. 应用生态学报,24(11):3185-3191.
Chen Hongyan, Zhao Gengxing, Li Xican, Wang Xiangfeng, and Li Yuling. 2013. Hyper Spectral Estimation Method for Soil Alkali Hydrolysable Nitrogen Content Based on Discrete Wavelet Transform and Genetic Algorithm in Combining with Partial Least Squares (DWT-GA-PLS). Chinese Journal of Applied Ecology, 24(11): 3185-3191.
|
丁永军,李民赞,郑立华,赵瑞娇,李修华,安登奎. 2011. 基于近红外光谱小波变换的温室番茄叶绿素含量预测. 光谱学与光谱分析,31(11):2936-2939.
Ding Yongjun, Li Minzan, Zheng Lihua, Zhao Ruijiao, Li Xiuhua, and An Dengkui. 2011. Prediction of Chlorophyll Content of Greenhouse Tomato Using Wavelet Transform Combined with NIR Spectra. Spectroscopy and Spectral Analysis, 31(11): 2936-2939.
|
董春旺,赵杰文,朱宏凯,袁海波,叶阳,陈全胜. 2017. 基于RSM和BP-AdaBoost-GA的红茶发酵性能参数优化. 农业机械学报,48(5):335-342.
Dong Chunwang, Zhao Jiewen, Zhu Hongkai, Yuan Haibo, Ye Yang, and Chen Quansheng. 2017. Parameter Optimization of Black Tea Fermentation Machine Based on RSM and BP-AdaBoost-GA. Transactions of the Chinese Society for Agricultural Machinery, 48(5): 335-342.
|
冯海宽,杨福芹,杨贵军,李振海,裴浩杰,邢会敏. 2018. 基于特征光谱参数的苹果叶片叶绿素含量估算. 农业工程学报,34(6):182-188.
Feng Haikuan, Yang Fuqin, Yang Guijun, Li Zhenhai, Pei Haojie, and Xing Huimin. 2018. Estimation of Chlorophyll Content in Apple Leaves Base on Spectral Feature Parameters. Transactions of the Chinese Society of Agricultural Engineering, 34(6): 182-188.
|
Ge Yufeng and Thomasson J A. 2006. Wavelet Incorporated Spectral Analysis for Soil Property Determination. Transactions of the Asabe, 49: 1193-1201.
|
Abakar Khalid A A and Yu Chongwen. 2013. Application of Genetic Algorithm for Feature Selection in Optimisation of SVMR Model for Prediction of Yarn Tenacity. Fibres & Textiles in Eastern Europe, 6(102): 95-99.
|
孔庆明,苏中滨,沈维政,张丙芳,王建波,纪楠,葛慧芳. 2015. IPLS-SPA波长选择方法在近红外秸秆生物量中的应用研究. 光谱学与光谱分析,35(5):1233-1238.
Kong Qingming, Su Zhongbin, Shen Weizheng, Zhang Bingfang, Wang Jianbo, Ji Nan, and Ge Huifang. 2015. Research of Straw Biomass Based on NIR by Wavelength Selection of IPLS-SPA. Spectroscopy and Spectral Analysis, 35(5): 1233-1238.
|
李长春,施锦锦,马春艳,崔颖琪,王艺琳,李亚聪. 2021. 基于小波变换和分数阶微分的冬小麦叶绿素含量估算. 农业机械学报,52(8):172-182.
Li Changchun, Shi Jinjin, Ma Chunyan, Cui Yingqi, Wang Yilin, and Li Yacong. 2021. Estimation of Chlorophyll Content in Winter Wheat Based on Wavelet Transform and Fractional Differentiation. Transactions of the Chinese Society for Agricultural Machinery, 52(8): 172-182.
|
李丹,彭智平,韩留生,王重洋,刘尉,黄思宇,陈水森. 2015. 基于土壤反射光谱特性的广东省稻田土壤快速分类. 热带地理,35(1):29-34.
Li Dan, Peng Zhiping, Han Liusheng, Wang Chongyang, Liu Wei, Huang Siyu, and Chen Shuisen. 2015. Rapid Soil Classification of Paddy Field in Guangdong Province Based on Visible and Near Infrared Reflectance Spectra. Tropical Geography, 35(1): 29-34.
|
李丹,彭智平,韩留生,黄继川,刘尉,黄思宇,陈水森. 2016. 基于高光谱数据的荔枝SPAD值快速估测. 热带地理,36(4):710-716.
Li Dan, Peng Zhiping, Han Liusheng, Huang Jichuan, Liu Wei, Huang Siyu, and Chen Shuisen. 2016. Estimation Model for Litchi Leaf SPAD-Reading Based on Hyper-Spectral Data. Tropical Geography, 36(4): 710-716.
|
Li Dong, Cheng Tao, Zhou Kai, Zheng Hengbiao, Yao Xia, Tian Yongchao, Zhu Yan, and Cao Weixing. 2017. Wrep: A Wavelet-Based Technique for Extracting the Red Edge Position from Reflectance Spectra for Estimating Leaf and Canopy Chlorophyll Contents of Cereal Crops. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 103-117.
|
Li Hongdong, Liang Yizeng, Long Xuxia, Yun Yonghuan, and Xu Qingsong. 2013. The Continuity of Sample Complexity and Its Relationship to Multivariate Calibration: A General Perspective on First-Order Calibration of Spectral Data in Analytical Chemistry. Chemometrics and Intelligent Laboratory Systems, 122: 23-30.
|
Li Huanhuan, Zhu Jiaji, Jiao Tianhui, Wang Bing, Wei Wenya, Shujat Ali, Qin Ouyang, Zuo Min, and Chen Quansheng. 2020. Development of a Novel Wavelength Selection Method VCPA-PLS for Robust Quantification of Soluble Solids in Tomato by On-Line Diffuse Reflectance NIR. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 243: 118765-118765.
|
李睿妍. 2022. 基于高光谱的果园土壤主要速效养分估测研究. 泰安:山东农业大学.
Li Ruiyan. 2022. Estimation of Main Available Nutrients in Orchard Soils Based on Hyperspectral. Taian: Shandong Agricultural University.
|
李玮祎,孙明馨,曾风玲,王凤文. 2022. 低温胁迫下冬小麦叶片叶绿素含量的高光谱估算. 中国农业气象,43(2):137-147.
Li Weiyi, Sun Mingxin, Zeng Fengling, and Wang Fengwen. 2022. Hyperspectral Estimation of Chlorophyll Content in Winter Wheat Leaves under Low Temperature Stress. Chinese Journal of Agrometeorology, 43(2): 137-147.
|
李旭,陈柏林,周保平,石子琰,洪国军. 2023. 利用叶片高光谱反射率预测棉花叶绿素含量. 华中农业大学学报,42(3):195-202.
Li Xu, Chen Bolin, Zhou Baoping, Shi Ziyan, and Hong Guojun. 2023. Predicting the Content of Chlorophyll in Cotton Using Hyperspectral Reflectance of Leaves. Journal of Huazhong Agricultural University, 42 (3): 195-202.
|
李友坤. 2012. BP神经网络的研究分析及改进应用. 淮南:安徽理工大学.
Li Youkun. 2012. Analysis and Improvement Applications of BP Neural Network. Huainan: Anhui University of Science and Technology.
|
梁亮,杨敏华,张连蓬,林卉,周兴东. 2012. 基于SVR算法的小麦冠层叶绿素含量高光谱反演. 农业工程学报,28(20):162-171,294.
Liang Liang, Yang Minhua, Zhang Lianpeng, Lin Hui, and Zhou Xingdong. 2012. Chlorophyll Content Inversion with Hyperspectral Technology for Wheat Canopy Based on Support Vector Regression Algorithm. Transactions of Agricultural Engineering, 28(20): 162-171, 294.
|
林洁,陈效民,张勇,潘根兴,张旭辉. 2012. 基于BP神经网络的太湖典型农田土壤水分动态模拟. 南京农业大学学报,35(4):140-144.
Lin Jie, Chen Xiaomin, Zhang Yong, Pan Genxing, and Zhang Xuhui. 2012. Simulation of Soil Moisture Dynamics Based on the BP Neural Network in the Typical Farmland of Tai Lake Region. Journal of Nanjing Agricultural University, 35(4): 140-144.
|
龙福海. 2022. 基于改进遗传算法优化的特征选择方法研究. 贵阳:贵州民族大学.
Long Fuhai. 2022. Research on Feature Selection Method Based on Improved Genetic Algorithm Optimization. Guiyang: Guizhou Minzu University.
|
Bruce Lori Mann and Li Jiang. 2001. Wavelets for Computationally Efficient Hyperspectral Derivative Analysis. IEEE Transactions on Geoscience and Remote Sensing, 39: 1540-1546.
|
Sharma Manish and Pachori Ram Bilas. 2017. A Novel Approach to Detect Epileptic Seizures Using a Combination of Tunable-Q Wavelet Transform and Fractal Dimension. Journal of Mechanics in Medicine and Biology, 17: 1740003.
|
Mao Zhihui, Deng Lei, Duan Fuzhou, Li Xiaojuan, and Qiao Danyu. 2020. Angle Effects of Vegetation Indices and the Influence on Prediction of SPAD Values in Soybean and Maize. International Journal of Applied Earth Observation and Geoinformation, 93: 102198.
|
彭咏石,陈水森,陈金月,赵晶,王重洋,官云兰. 2021. 基于连续小波系数的叶绿素a浓度估测模型. 激光与光电子学进展,58(8):431-439.
Peng Yongshi, Chen Shuisen, Chen Jinyue, Zhao Jing, Wang Chongyang, and Guan Yunlan. 2021. Estimation Model of Chlorophyll-A Concentration Based on Continuous Wavelet Coefficient. Laser Optoelectronics Progress, 58(8): 431-439.
|
施锦锦. 2021. 基于冠层高光谱数据冬小麦叶绿素含量估算研究. 焦作:河南理工大学.
Shi Jinjin. 2021. Estimation of Winter Wheat Chlorophyll Content Based on Canopy Hyperspectral Data. Jiaozuo: Henan Polytechnic University.
|
孙大明. 2020. 基于模型集群分析的小麦品质近红外光谱分析技术研究. 长春:长春理工大学.
Sun Daming. 2020. Research on Near Infrared Spectroscopy of Wheat Quality Based on Model Population Analysis. Changchun: Changchun University of Science and Technology.
|
Sun Zhongqiu, Bu Zhaojun, Lu Shan, and Omasa Kenji. 2021. A General Algorithm of Leaf Chlorophyll Content Estimation for a Wide Range of Plant Species. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-14.
|
Tang Guo, Huang Yue, Tian Kuangda, Song Xiangzhong, Yan Hong, Hu Jing, Xiong Yanmei, and Min Shungeng. 2014. A New Spectral Variable Selection Pattern Using Competitive Adaptive Reweighted Sampling Combined with Successive Projections Algorithm. The Analyst, 139: 4894-4902.
|
田雨欣,王正海,谢鹏. 2024. 基于特征筛选结合PSO-BPNN和GA-BPNN算法的土壤重金属高光谱定量反演. 遥感技术与应用,39(1):259-268.
Tian Yuxin, Wang Zhenghai, and Xie Peng. 2024. Quantitative Hyperspectral Inversion of Soil Heavy Metals Based on Feature Screening Combined with PSO-BPNN and GA-BPNN Algorithms. Remote Sensing Technology and Application, 39(1): 259-268.
|
童倩倩,李莉婕,赵泽英,岳延滨,刘海. 2020. 基于离散小波算法定量反演贵州百香果叶片叶绿素含量的研究. 西南农业学报,33(12):2927-2932.
Tong Qianqian, Li Lijie, Zhao Zeying, Yue Yanbin, and Liu Hai. 2020. Quantitative Inversion of Chlorophyll Content in Passiflora Edulis Leaves Based on Discrete Wavelet Algorithm in Guizhou Province. Southwest China Journal of Agricultural Sciences, 33(12): 2927-2932.
|
Umut Hasan, Jia Kai, Wang Li, Wang Chongyang, Shen Ziqi, Yu Wenjie, Sun Yishan, Jiang Hao, Zhang Zhicong, Guo Jinfeng, Wang Jingzhe, and Li Dan. 2023. Retrieval of Leaf Chlorophyll Contents (LCCs) in Litchi Based on Fractional Order Derivatives and VCPA-GA-ML Algorithms. Plants, 12: 501.
|
Rossel R A V and Lark R M. 2009. Improved Analysis and Modelling of Soil Diffuse Reflectance Spectra Using Wavelets. European Journal of Soil Science, 60: 453-464.
|
王凡,陈龙跃,段丹丹,曹琼,赵钰,蓝玩荣. 2022. 小波分析的茶鲜叶全氮含量高光谱监测. 光谱学与光谱分析,42(10):3235-3242.
Wang Fan, Chen Longyue, Duan Dandan, Cao Qiong, Zhao Yu, and Lan Wanrong. 2022. Estimation of Total Nitrogen Content in Fresh Tea Leaves Based on Wavelet Analysis. Spectroscopy and Spectral Amlysis, 42(10): 3235-3242.
|
王冠智,粟晓玲,张特,姜田亮,褚江东. 2021. 基于DWT-WFGM(1,1)-ARMA组合模型的农业用水量预测. 灌溉排水学报,40(11):106-114.
Wang Guanzhi, Su Xiaoling, Zhang Te, Jiang Tianliang, and Chu Jiangdong. 2021. Predicting Agricultural Water Demand Using the DWT-WFGM (1, 1)-ARMA Model. Journal of Irrigation and Drainage, 40(11): 106-114.
|
Wang Huifang, Huo Zhiguo, Zhou Guangsheng, Liao Qinhong, Feng Haikuan, and Wu Li. 2016. Estimating Leaf SPAD Values of Freeze-Damaged Winter Wheat Using Continuous Wavelet Analysis. Plant Physiology and Biochemistry, 98: 39-45.
|
王延仓,李笑芳,李莉婕,李楠,姜倩楠,顾晓鹤,杨秀峰,林家禄. 2023. 基于离散小波-微分变换算法定量反演火龙果茎枝叶绿素含量的研究. 光谱学与光谱分析,43(2):549-556.
Wang Yancang, Li Xiaofang, Li Lijie, Li Nan, Jiang Qiannan, Gu Xiaohe, Yang Xiufeng, and Lin Jialu. 2023. Quantitative Inversion of Chlorophyll Content in Stem and Branch of Pitaya Based on Discrete Wavelet Differential Transform Algorithm. Spectroscopy and Spectral Amlysis, 43(2): 549-556.
|
肖艳,辛洪波,王斌,崔利,姜琦刚. 2021. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测. 国土资源遥感,33(2):33-39.
Xiao Yan, Xin Hongbo, Wang Bin, Cui Li, and Jiang Qigang. 2021. Hyperspectral Estimation of Black Soil Organic Matter Content Based on Wavelet Trans Form and Successive Projections Algorithm. Remote Sensing of Land Resources, 33(2): 33-39.
|
谢丽娟. 2009. 转基因番茄的可见/近红外光谱快速无损检测方法. 杭州:浙江大学.
Xie Lijuan. 2009. Rapid Non-Destructive Detection Method of Transgenic Tomato by Visible/Near Infrared Spectroscopy. Hangzhou: Zhejiang University.
|
杨锡震,陈俊英,张秋雨,王天阳,左西宇,杨宁,耿宏锁,赵笑. 2023. 基于小波特征和冬小麦生理参数的土壤水分高光谱模型优化. 农业工程学报,39(10):66-75.
Yang Xizhen, Chen Junying, Zhang Qiuyu, Wang Tianyang, Zuo Xiyu, Yang Ning, Geng Hongsuo, and Zhao Xiao. 2023. Optimization of the Soil Moisture Model Based on Hyperspectral Inversion by Integrating Wavelet Features and Growth Parameters of Winter Wheat. Transactions of the Chinese Society of Agricultural Engineering, 39(10): 66-75.
|
杨旭东. 2020. 基于小波变换的ECG信号特征参数提取研究. 成都:电子科技大学.
Yang Xudong. 2020. Research on Extraction of ECG Signal Characteristic Parameters Based on Wavelet Transform. Chengdu: University of Electronic Science and Technology of China.
|
于雷,章涛,朱亚星,周勇,夏天,聂艳. 2018. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值. 农业工程学报,34(16):148-154.
Yu Lei, Zhang Tao, Zhu Yaxing, Zhou Yong, Xia Tian, and Nie Yan. 2018. Determination of Soybean Leaf SPAD Value Using Characteristic Wavelength Variables Preferably Selected by IRIV Algorithm. Transactions of the Chinese Society of Agricultural Engineering, 34(16): 148-154.
|
袁超,张浩,凌云汉,孙越,黄达力,张南,胡凤娇. 2023. 基于小波变换和S-G滤波的多尺度平滑预处理方法. 锻压技术,48(6):140-155.
Yuan Chao, Zhang Hao, Ling Yunhan, Sun Yue, Huang Dali, Zhang Nan, and Hu Fengjiao. 2023. Multiscale Smoothing Preprocessing Method Based on Wavelet Transform and S-G Filtering. Forging Technology, 48(6): 140-155.
|
苑迎春,周毅,宋宇斐,徐铮,王克俭. 2022. 基于信息熵特征选择的小麦冠层叶绿素含量估测方法. 农业机械学报,53(8):186-195.
Yuan Yingchun, Zhou Yi, Song Yufei, Xu Zheng, and Wang Kejian. 2022. Estimation Method of Wheat Canopy Chlorophyll Based on Information Entropy Feature Selection. Transactions of the Chinese Society for Agricultural Machinery, 53(8): 186-195.
|
岳学军,全东平,洪添胜,王健,瞿祥明,甘海明. 2015. 柑橘叶片叶绿素含量高光谱无损检测模型. 农业工程学报,31(1):294-302.
Yue Xuejun, Quan Dongping, Hong Tiansheng, Wang Jian, Qu Xiangming, and Gan HaiMing. 2015. Non-Destructive Hyperspectral Measurement Model of Chlorophyll Content for Citrus Leaves. Transactions of the Chinese Society of Agricultural Engineering, 31(1): 294-302.
|
Yun Yonghuan,Wang Weiting, Deng Baichuan, Lai Guangbi, Liu Xinbo, Ren Dabing, Liang Yizeng, Fan Wei, and Xu Qingsong. 2015. Using Variable Combination Population Analysis for Variable Selection in Multivariate Calibration. Analytica Chimica Acta, 862: 14-23.
|
Yun Yonghuan, Bin Jun, Liu Dongli, Xu Lin, Yan Tingliang, Cao Dongsheng, and Xu Qingsong. 2019. A Hybrid Variable Selection Strategy Based on Continuous Shrinkage of Variable Space in Multivariate Calibration. Analytica Chimica Acta, 1058: 58-69.
|
Yun Yonghuan, Liang Yizeng, Xie Guixiang, Li Hongdong, Cao Dongsheng, and Xu Qingsong. 2013. A Perspective Demonstration on the Importance of Variable Selection in Inverse Calibration for Complex Analytical Systems. The Analyst, 138: 6412-6421.
|
Zarco-Tejada Pablo J, Miller J R, Mohammed G H, and Noland T L. 2000. Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance I. Leaf-Level Measurements and Model Simulation. Remote Sensing of Environment, 74: 582-595.
|
曾权,李鑫,王克鲁,鲁世强,刘杰,黄文杰,周潼,汪增强. 2024. 基于GA-BP和PSO-BP神经网络的SLM GH3625高温合金残余应力预测研究. 塑性工程学报,31(3):193-199.
Zeng Quan, Li Xin, Wang Kelu, Lu Shiqiang, Liu Jie, Huang Wenjie, Zhou Tong, and Wang Zengqiang. 2024. Study on Residual Stress Prediction of SLM GH3625 High Temperature Alloy Based on GA-BP and PSO-BP Neural Networks. Journal of Plasticity Engineering, 31(3): 193-199.
|
张国丽,杨宝林,张志,王少军,张国丽,杨宝林,张志,王少军. 2015. 基于GIS与BP神经网络的采空塌陷易发性预测. 热带地理,35(5):770-776.
Zhang Guoli, Yang Baolin, Zhang Zhi, Wang Shaojun, Zhang Guoli, Yang Baolin, Zhang Zhi, and Wang Shaojun. 2015. Susceptibility Prediction of Underground Mining Collapse Based on GIS and BP Neural Network. Tropical Geography, 35(5): 770-776.
|
张国翊,胡铮. 2011. 改进BP神经网络模型及其稳定性分析. 中南大学学报(自然科学版),42(1):115-124.
Zhang Guoyi and Hu Zheng. 2011. Improved BP Neural Network Model and Its Stability Analysis. Journal of Central South University (Science and Technology), 42(1): 115-124.
|
Zhang Huichun, Ge Yufeng, Xie Xinyan, Atefi Abbas, Wijewardane Nuwan K, and Thapa Suresh. 2022. High Throughput Analysis of Leaf Chlorophyll Content in Sorghum Using Rgb, Hyperspectral, and Fluorescence Imaging and Sensor Fusion. Plant Methods, 18: 60.
|
Zhang Junyi, Sun Hong, Gao Dehua, Qiao Lang, Liu Ning, Li Minzan, and Zhang Yao. 2020. Detection of Canopy Chlorophyll Content of Corn Based on Continuous Wavelet Transform Analysis. Remote Sensing, 12(17): 2741.
|
赵建忠,徐廷学,葛先军,尹延涛. 2013. 基于小波变换和GM-ARMA的导弹备件消耗预测. 北京航空航天大学学报,39(4):553-558.
Zhao Jianzhong, Xu Tingxue, Ge Xianjun, and Yin Yantao. 2013. Consumption Forecasting of Missile Spare Parts Based on Wavelet Transform and Revised GM-ARMA Model. Journal of Beijing University of Aeronautics and Astronautics, 39(4): 553-558.
|
Zhao Ruiying, Asim Biswas, Zhou Yin, Zhou Yue, Shi Zhou, and Li Hongyi. 2018. Identifying Localized and Scale-Specific Multivariate Controls of Soil Organic Matter Variations Using Multiple Wavelet Coherence. Science of the Total Environment, 643: 548-558.
|
赵卫国,张凯,塔娜,朝红波,杜慧娟,栗茂腾,王灏. 2023. 甘蓝型油菜叶中控制叶绿素含量性状的QTL定位及其候选基因鉴定. 西南农业学报,36(7):1357-1368.
Zhao Weiguo, Zhang Kai, Ta Na, Chao Hongbo, Du Huijuan, Li Maoteng, and Wang Hao. 2023. QTL Mapping and Candidate Gene Identification for Controlling Chlorophyll Content Traits in Brassica Napus L. Leaves. Southwest China Journal of Agricultural Sciences, 36(7): 1357-1368.
|
赵燕红,侯鹏,蒋金豹,姜赟,张兵,白君君,徐海涛. 2021. 植被生态遥感参数定量反演研究方法进展. 遥感学报,25(11):2173-2197.
Zhao Yanhong, Hou Peng, Jiang Jinbao, Jiang Yun, Zhang Bing, Bai Junjun, and Xu Haitao. 2021. Progress in Quantitative Inversion of Vegetation Ecological Remote Sensing Parameters. Journal of Remote Sensing, 25(11): 2173-2197.
|
郑智康,常庆瑞,姜时雨,符欣彤,李铠,张子娟,莫海洋. 2023. 基于无人机高光谱分数阶微分玉米SPAD值估算. 东北农业大学学报,54(2):66-74.
Zheng Zhikang, Chang Qingrui, Jiang Shiyu, Fu Xintong, Li Kai, Zhang Zijuan, and Mo Haiyang. 2023. Estimation of Maize SPAD Value Based on Fractional Differential of UAV Hyperspectral. Journal of Northeast Agricultural University, 54(2): 66-74.
|
/
〈 |
|
〉 |