海湾社区韧性评估及提升策略研究——以厦门五缘湾为例
许梦杰(1999—),女,河南周口人,硕士研究生,研究方向为生态景观规划,(E-mail)xumengjie0507@163.com; |
收稿日期: 2024-11-23
修回日期: 2025-02-28
网络出版日期: 2025-04-07
基金资助
五缘湾水域功能区划(ZX-2024-088)
Assessment and Enhancement of Coastal Community Resilience Strategies: A Case Study of Wuyuan Bay in Xiamen
Received date: 2024-11-23
Revised date: 2025-02-28
Online published: 2025-04-07
气候变化导致极端天气事件及海平面上升正威胁着沿海城市社区安全。为应对这一挑战,建设韧性社区已成为保障城市安全和减缓灾害影响的重要手段。文章基于社区基线理论,将韧性视为适应性与脆弱性的权衡,构建了海湾社区韧性的评估框架,并以厦门市五缘湾片区的25个小区为例,展开沿海灾害影响分析及韧性评估。结果表明,由于地理位置的不同,社区的韧性值差异显著:位于内湾的社区韧性水平较高,主要归因于其毗邻湿地公园、良好风浪条件和集中的应急设施。相反,位于外湾填海区的社区面临高受灾风险和救援不便的问题,因此韧性值较低。此外,居民自身防灾能力对于社区韧性也密切相关。以同属性外湾区域的社区为例,在部分社区实例中,由于社区凝聚力和协作能力水平较高,其韧性值仅次于内湾最高韧性值社区。然而在内湾社区案例中,由于居民社会网络较为松散,资源整合能力不足,导致应急防灾能力存在明显短板,其韧性水平较外湾滞后。因此提升沿海社区韧性需差异化施策:外湾优先优化防灾设施与应急系统,内湾强化社群协作与资源整合,并制定韧性分级标准;研究表明,唯有协同空间规划(降低暴露度)与社会能力(增强协作),方能有效应对复合型气候风险。
许梦杰 , 刘兴诏 , 谢慧黎 , 张扬 , 戴洪霞 , 周沿海 , 黄发明 . 海湾社区韧性评估及提升策略研究——以厦门五缘湾为例[J]. 热带地理, 2025 : 1 -12 . DOI: 10.13284/j.cnki.rddl.20240764
Amidst the intensifying global climate change, coastal cities face multiple marine disaster threats due to sea level rise and frequent extreme weather events. Storm surge-induced flood disasters and their secondary effects (e.g., urban waterlogging) pose systemic risks to the lives of the residents, properties, and coastal system infrastructure. Compared with traditional disaster prevention models, the synergistic mechanism between resilience theory and community risk management not only provides a theoretical framework for urban complex risk prevention, but also demonstrates dynamic adaptive advantages in pre-disaster prevention, disaster response, and post-disaster recovery. Accordingly, this study integrated the resilience community theory with the sponge city concept, selecting 25 storm surge-prone bay communities in the Xiamen Wuyuan Bay Area as samples to establish a community resilience evaluation framework encompassing exposure, vulnerability, adaptability, and spatial connectivity. By integrating 16 subjective and objective indicators, including the rescue facility coverage rate and residents' disaster preparedness literacy, we employed the AHP-CRITIC combined weighting method to determine indicator weights and quantify community resilience levels using TOPSIS analysis. The key findings are categorized as follows: (1) an overview of the marine disaster context, the theoretical evolution of resilient communities, and existing research gaps. The literature review indicated that marine disaster threats to coastal urban safety showed significant upward trends, where communities, as direct disaster-bearing entities, needed urgent refined resilience assessments considering their spatial heterogeneity and component vulnerability. International practice comparisons revealed three critical deficiencies in China's resilient community development: overreliance on infrastructure hardware while neglecting the landscape spatial resilience layout, insufficient innovation in social organizational resilience and collaborative mechanisms, and superficial resident participation lacking substantive interactive mechanisms. (2) Development of multidimensional resilience evaluation system Through meta-analysis and expert consultation, we established a dual-dimensional ("vulnerability-adaptability") evaluation system comprising 7 primary and 16 secondary indicators. The AHP-CRITIC combined weighting results indicated that hazard level (0.221), disaster prevention capacity (0.169), and emergency response capacity (0.168) constituted the highest-weighted primary indicators. Secondary indicators, including coastal length, shoreline protection intensity, and volunteer rescue station accessibility, demonstrated significant spatial exposure and emergency response weights, suggesting for their prioritization in coastal community retrofitting. (3) Implementation of a resilience assessment system for coastal community in Wuyuan Bay Field surveys and questionnaire data enabled quantitative resilience analysis of 25 communities. TOPSIS results revealed geographical location and residents' disaster preparedness as core drivers of resilience differentiation. Inner bay communities (e.g., D25) achieved maximum resilience (0.872) through wetland regulation, natural terrain barriers, and emergency facility clusters, whereas outer bay communities (e.g., D1) showed minimal resilience (0.312), owing to high-risk exposure and medical resource scarcity. Wetland ecosystems notably reduced drainage system loads through hydrological regulation and flood detention mechanisms. (4) Optimization strategies for coastal community resilience. This study systematically identified the core elements for developing community resilience during flood-related disasters through the establishment of a coastal community resilience assessment system and empirical research. Through a comparative analysis of typical domestic and international scenarios, we proposed an actionable resilience enhancement strategy system. For public space optimization, dual-purpose strategies for both normal and emergency conditions were emphasized for road networks and green systems, integrating traffic management with ecological protection. For ecological water system development, the water conservation mechanisms of coastal wetland ecological barriers were systematically elucidated, and a synergistic optimization pathway for wetland protection and community water systems based on nature-based solutions was proposed. Regarding emergency shelter spatial planning, an innovative comprehensive evaluation framework was established, incorporating location accessibility, per capita shelter area thresholds, disaster prevention facility standards, and emergency transportation systems. For social governance, resident participation mechanisms and smart management platforms were suggested to amplify community resilience through flexible interaction and resource integration.
图1 研究区概况 Fig.1 Overview of the study area |
表1 应对雨洪灾害的海湾社区韧性评估指标体系Table 1 Resilience assessment indicators of bay-type communities in response to typhoon disasters |
因子层 | 一级指标 | 量化指标 | 数据来源(获取时间) |
---|---|---|---|
脆弱性 | 路网系统 | 社区内路网密度(-) | 道路数据来源于链家网站(2024年),https://xm.lianjia.com/ |
公共交通可达性(+) | 源于OpenStreetMap网站(2024年),https://www.openstreetmap.org | ||
土地利用 | 绿地率(—) | 绿地率数据来源于链家网站(2024年) | |
开发强度(+) | 容积率数据来源于链家网站(2024年) | ||
人口因素 | 人口数量(+) | 社区物业及当地派出所现场调研 | |
危险性 | 淹没风险(+) | 岸线类型数据源于自然资源部第三海洋研究所对五缘湾的海域调研数据(2021年), https://gi.mnr.gov.cn/ | |
临岸长度(+) | 沿岸长度数据源于自然资源部第三海洋研究所对五缘湾的海域调研数据(2021年) | ||
岸线防护水平(+) | 来源于自然资源部第三海洋研究所对五缘湾的海域调研数据(2021年) | ||
适应性 | 应急能力 | 医疗站点距离(-) | 点位数据来源于中国科学院地理科学与资源研究所(2024年),由兴趣点(Point of interest,POI)工具抓取,http://www.igsnrr.cas.cn/sjgx/ |
消防站点距离(-) | |||
志愿站点距离(-) | |||
避难场所距离(-) | 应急场地点位来源于中国科学院地理科学与资源研究所(2024年) | ||
防灾能力 | 居民防灾能力(+) | 调研问卷(2024年) | |
社区应急能力(+) | 物业费数据来源于链家网站(2024年) | ||
恢复能力 | 房产售价水平(+) | 年均已成交房价数据来源于链家网站(2024年) | |
排水管网密度(+) | 雨水管网数据来自厦门市市政园林局官网《厦门市排水(雨水)防涝专项规划(2020—2035年)》,http://szyl.xm.gov.cn/xxgk/zfxxgkml/xzxk/202105/t20210519_2545056.htm. |
|
表2 道路类型阻力值Table 2 The resistance value of the road type |
道路类型 | 限速/(km·h-1) | 阻力值 | 缓冲区/m |
---|---|---|---|
快速路 | [60,80) | 1 | 55 |
主干道 | [40,60) | 2 | 50 |
次干道 | [30,40) | 3 | 35 |
支路 | [0,30) | 4 | 25 |
表3 各指标组合权重及量化Table 3 Weights and quantification of each indicator portfolio |
一级指标 | AHP | 二级指标 | CRITIC | 综合权重 |
---|---|---|---|---|
路网系统 | 0.126 | 公共交通可达性(+) | 0.10 | 0.08 |
社区内路网密度(-) | 0.05 | 0.04 | ||
土地利用 | 0.086 | 绿地率(-) | 0.05 | 0.03 |
开发强度(+) | 0.07 | 0.04 | ||
人口因素 | 0.068 | 人口数量(+) | 0.06 | 0.03 |
危险性 | 0.221 | 淹没风险(+) | 0.05 | 0.07 |
沿岸长度(+) | 0.07 | 0.11 | ||
岸线防护水平(+) | 0.08 | 0.11 | ||
应急能力 | 0.168 | 医疗站点距离(-) | 0.05 | 0.06 |
消防站点距离(-) | 0.01 | 0.01 | ||
避难场所可达性(-) | 0.06 | 0.06 | ||
志愿站点距离(-) | 0.09 | 0.10 | ||
防灾能力 | 0.169 | 居民防灾能力(+) | 0.10 | 0.10 |
社区应急能力(+) | 0.07 | 0.08 | ||
恢复能力 | 0.159 | 排水管网密度(+) | 0.05 | 0.05 |
房产售价水平(+) | 0.05 | 0.05 |
表4 各小区韧性评价结果Table 4 Evaluation results of resilience of each community |
地理 位置 | 小区 | 正理想解 距离D+ | 负理想解 距离D- | 相对接近度C | 排序 结果 | 韧性 等级 |
---|---|---|---|---|---|---|
内湾 | D16 | 9.000 | 118.743 | 0.93 | 1 | 高 |
D25 | 103.532 | 27.916 | 0.212 | 2 | ||
D19 | 103.281 | 23.23 | 0.184 | 3 | ||
D24 | 115.103 | 23.157 | 0.167 | 4 | ||
D23 | 116.004 | 22.074 | 0.16 | 5 | ||
D22 | 113.593 | 21.423 | 0.159 | 6 | ||
D21 | 115.917 | 20.094 | 0.148 | 7 | ||
D20 | 115.661 | 19.131 | 0.142 | 8 | ||
D18 | 116.283 | 17.087 | 0.128 | 9 | ||
D17 | 116.214 | 16.107 | 0.122 | 10 | ||
D15 | 116.535 | 14.101 | 0.108 | 11 | 中 | |
D14 | 116.407 | 13.139 | 0.101 | 12 | ||
D13 | 115.513 | 12.346 | 0.097 | 13 | ||
D12 | 116.597 | 11.167 | 0.087 | 14 | ||
D11 | 116.661 | 10.193 | 0.08 | 15 | ||
D10 | 117.344 | 9.11 | 0.072 | 16 | ||
D9 | 116.762 | 8.279 | 0.066 | 17 | ||
外湾 | D8 | 117.296 | 7.212 | 0.058 | 18 | |
D7 | 118.053 | 6.103 | 0.049 | 19 | ||
D6 | 117.572 | 5.302 | 0.043 | 20 | 低 | |
D5 | 117.332 | 4.554 | 0.037 | 21 | ||
D4 | 119.233 | 3.03 | 0.025 | 22 | ||
D3 | 119.482 | 2.031 | 0.017 | 23 | ||
D2 | 119.459 | 1.15 | 0.01 | 24 | ||
D1 | 120.212 | 0 | 0 | 25 |
许梦杰:负责论文的起草、采集整理数据、统计分析及论文修改等;
刘兴诏:提供研究方案设计及技术性指导;
谢慧黎:制作图件及审稿意见修改;
张 扬:数据收集与分析;
戴洪霞:调研整理文献及最终的修订;
黄发明:提出研究选题及提供研究经费。
Adger W N. 2000. Social and Ecological Resilience: Are they related? Progress in Human Geography, 24(3): 347-364.
|
Bede B. 2012. Mathematics of Fuzzy Sets and Fuzzy Logic. Berlin: Springer, 1-338.
|
Bruneau M, Chang S E, Eguchi R T, Lee G C, O'Rourke T D, Reinhorn A M, Shinozuka M, Tierney K, Wallace W A, and Winterfeldt D. 2003. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4): 733-752.
|
Cutter S, Ash K, and Emrich C. 2014. The Geographies of Community Disaster Resilience. Global Environmental Change, 29: 65-77.
|
Cai Feng, Cao hao, Qi Hong, Su Xiao wei, Lei Gang, Liu Jun, Zhao Shuang, Liu Guanghui, and Zhu Kai. 2022. Rapid migration of mainland China's coastal erosion vulnerability due to anthropogenic changes. Journal of Environmental Management, 319, 115632.
|
Holling C S. 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology, Evolution, and Systematics, 4: 1-23.
|
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
Lam N S, Reams M, Li K, Li C, and Mata L P. 2016. Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico. Natural Hazards Review, 17(1): 04015013.
|
陈奇放,翟国方,施益军. 2020. 韧性城市视角下海平面上升对沿海城市的影响及对策研究——以厦门市为例. 现代城市研究,(2):106-116.
Chen Qifang, Zhai Guofang, and Shi Yijun. 2020. Research on the Impact of Sea Level Rise on Coastal Cities and Countermeasures from the Perspective of Resilient Cities: A Case Study of Xiamen. Modern Urban Research, (2): 106-116.
|
Deeming H, Fordham M, Kuhlicke C, Pedoth L, Schneiderbauer S, and Shreve C. 2018. Framing Community Disaster Resilience: Resources, Capacities, Learning, and Action. Hoboken, NJ: John Wiley & Sons, Ltd.
|
Dlakoulaki D, Mavrotas G, and Papayannakis L. 1995. Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method. Computers & Operations Research, 22(7): 763-770.
|
郭云霞. 2022. 中国东南沿海区域台风及其风暴潮模拟与危险性分析. 北京:中国科学院大学(中国科学院海洋研究所).
Guo Yunxia. 2022. Simulation and Risk Analysis of Typhoons and Storm Surges in the Southeastern Coastal Region of China. Beijing: University of Chinese Academy of Sciences(Institute of Oceanology, Chinese Academy of Sciences).
|
黄健元,龚志冬. 2018. 缓发性海洋灾害影响评估研究:基本视角与理论框架. 河海大学学报(哲学社会科学版),20(3):64-70,92-93.
Huang Jianyuan and Gong Zhidong. 2018. Research on Impact Assessment of Slow-Onset Marine Disasters: Basic Perspectives and Theoretical Framework. Journal of Hohai University (Philosophy and Social Sciences Edition), 20(3): 64-70, 92-93.
|
雷勋平,邱广华. 2016. 基于熵权TOPSIS模型的区域资源环境承载力评价实证研究. 环境科学学报,36(1):314-323.
Lei Xunping and Qiu Guanghua. 2016. Empirical Research on Regional Resource and Environmental Carrying Capacity Assessment Based on Entropy Weight TOPSIS Model. Acta Scientiae Circumstantiae, 36(1): 314-323.
|
李亚,翟国方. 2017. 我国城市灾害韧性评估及其提升策略研究. 规划师,33(8):5-11.
Li Ya and Zhai Guofang. 2017. Research on Urban Disaster Resilience Assessment and Improvement Strategies in China. Planner, 33(8): 5-11.
|
National Academies of Sciences, Engineering, and Medicine. 2012. Disaster Resilience: A National Imperative. (2012-12-01) [2024-12-01]. https://doi.org/10.17226/13457.
|
Orencio P M and Fujii M. 2013. A Localized Disaster-Resilience Index to Assess Coastal Communities Based on an Analytic Hierarchy Process (AHP). International Journal of Disaster Risk Reduction, 3: 62-75.
|
欧阳虹彬,叶强. 2016. 韧性城市理论演化述评:概念、脉络与趋势. 城市规划,40(3):34-42.
Ouyang Hongbin and Ye Qiang. 2016. A Review of the Evolution of Resilient City Theory: Concepts, Contexts, and Trends. Urban Planning, 40(3): 34-42.
|
Paton D, Millar M, and Johnston D. 2001. Community Resilience to Volcanic Hazard Consequences. Natural Hazards, 24(2): 157-169.
|
彭翀,郭祖源,彭仲仁. 2017. 国外社区韧性的理论与实践进展. 国际城市规划,32(4):60-66.
Peng Chong, Guo Zuyuan, and Peng Zhongren. 2017. Theoretical and Practical Advances in Community Resilience Abroad. International Urban Planning, 32(4): 60-66.
|
师满江,曹琦. 2019. 城乡规划视角下韧性理论研究进展及提升措施. 西部人居环境学刊,34(6):32-41.
Shi Manjiang and Cao Qi. 2019. Research Progress and Improvement Measures of Resilience Theory from the Perspective of Urban and Rural Planning. Journal of Western Human Settlements, 34(6): 32-41.
|
唐彦东,张青霞,于汐. 2023. 国外社区韧性评估维度和方法综述. 灾害学,38(1):141-147.
Tang Yandong, Zhang Qingxia, and Yu Xi. 2023. A Review of Assessment Dimensions and Methods for Community Resilience Abroad. Journal of Disaster Science, 38(1): 141-147.
|
王江波,沈天宇,苟爱萍. 2022. 海岸带地区空间治理机制. 科技导报,40(19):81-94.
Wang Jiangbo, Shen Tianyu, and Gou Aiping. 2022. Coastal Area Spatial Governance Mechanism. Science and Technology Review, 40(19): 81-94.
|
吴文菁,陈佳颖,叶润宇,李杨帆. 2019. 台风灾害下海岸带城市社会-生态系统脆弱性评估——大数据视角. 生态学报,39(19):7079-7086.
Wu Wenjing, Chen Jiaying, Ye Runyu, and Li Yangfan. 2019. Evaluation of Social-Ecological System Vulnerability in Coastal Cities under Typhoon Disasters: A Big Data Perspective. Acta Ecologica Sinica, 39(19): 7079-7086.
|
Xie Huili, Wang Xinke, Hu Xiaoting, Shi Zhiyong, Lin Hong, Xie Xiangqun, Chen Lingxiu, Dai Hongxia, Zhang Jiao, Xu Mengjie, and Liu Xingzhao. 2023a. Exploring Urban Green Space Optimization of the Urban Walking Life Circle in Fuzhou, China. International Journal of Environmental Research and Public Health, 20(2): 1180.
|
Xie Huili, Wang Xinke, Wang Zhenfeng, Shi Zhiyong, Hu Xiaoting, Lin Hong, Xie Xiangqun, and Liu Xingzhao. 2023b. Mismatch between Infrastructure Supply and Demand Within a 15-Minute Living Circle Evaluation in Fuzhou, China. Heliyon, 9(9): e20130.
|
西明·达武迪,曹康,王金金,陶舒晨. 2015. 韧性规划:纽带概念抑或末路穷途. 国际城市规划,30(2):8-12.
Simin Davoudi, Cao Kang, Wang Jinjing, and Tao Shuchen. 2015. Resilient Planning: A Connecting Concept or a Dead-End. International Journal of Urban Planning, 30(2): 8-12.
|
许炜宏,蔡榕硕. 2021. 海平面上升、强台风和风暴潮对厦门海域极值水位的影响及危险性预估. 海洋学报,43(5):14-26.
Xu Weihong and Cai Rongshuo. 2021. Impact and Risk Assessment of Sea Level Rise, Strong Typhoons, and Storm Surges on Extreme Water Levels in Xiamen Waters. Acta Oceanologica Sinica, 43(5): 14-26. .
|
厦门市市政园林局. 2021. 厦门市排水(雨水)防涝专项规划(2020—2035年). (2021-05-19)[2024-06-30]. http://szyl.xm.gov.cn/xxgk/zfxxgkml/xzxk/202105/t20210519_2545056.htm. [Xiamen Municipal Bureau of Gardens and Forestry (Editor). 2021. Special Plan for Drainage (Stormwater) and Flood Prevention in Xiamen (2020–2035). (2021-05-19) [2024-06-30]. http://szyl.xm.gov.cn/xxgk/zfxxgkml/xzxk/202105/t20210519_2545056.html]
|
厦门市自然资源和规划局. 2021. 厦门市国土空间生态修复专项规划(2021-2035年). (2021-11-08)[2025-04-02]. https://www.3gcj.com/z-196568.html.
Xiamen Municipal Bureau of Natural Resources and Planning. 2021. Special Plan for Territorial Space Ecological Restoration in Xiamen (2021–2035). (2021-11-08) [2025-04-02]. https://www.3gcj.com/z-196568.html.
|
Yang Qiaoyun, Dan Yang, Li Peng, Liang Shilu, and Zhang Zhenghu. 2021. A Bibliometric and Visual Analysis of Global Community Resilience Research. International Journal of Environmental Research and Public Health, 18(20): 10857.
|
杨宝臣,陈跃. 2011. 基于组合赋权TOPSIS模型的项目评标方法研究. 电子科技大学学报(社科版),13(1):50-54,62.
Yang Baochen and Chen Yue. 2011. Research on Project Bidding Evaluation Method Based on Combination Weighting and TOPSIS Model. Journal of University of Electronic Science and Technology of China (Social Sciences Edition), 13(1): 50-54, 62.
|
杨选梅,刘超,彭翀. 2024. 社区韧性:发展演进及空间规划启示. 西部人居环境学刊,39(2):64-71.
Yang Xuanmei, Liu Chao, and Peng Chong. 2024. Community Resilience: Development Evolution and Spatial Planning Implications. Journal of Western Human Settlements, 39(2): 64-71.
|
朱诗尧. 2021. 城市抗涝韧性的度量与提升策略研究. 南京:东南大学.
Zhu Shiyao. 2021. Research on Measurement and Enhancement Strategies of Urban Flood Resilience. Nanjing: Southeast University.
|
Zhou Yanhai, Xie Huili, Liu Xingzhao, Wang Xinke, and Wang Zhenfeng. 2024. From Service Capacity to Spatial Equity: Accurately and Comprehensively Evaluating Urban Park Green Space Distribution under Multi-Trips Mode. PLoS One, 19(1): e0296629.
|
中华人民共和国住房和城乡建设部. 2012. CJJ37-2012城市道路工程设计规范. 北京:中国建筑工业出版社.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. 2012. CJJ37-2012 Code for Design of Urban Road Engineering. Beijing: China Architecture & Building Press.
|
中华人民共和国住房和城乡建设部. 2014. 城市暴雨强度公式编制和设计暴雨雨型确定技术导则. (2022-06-23)[2024-12-01]. http://www.mohurd.gov.cn.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. 2014. Technical Guidelines for Establishment of Intensity-Duration-Frequency Curve and Design Rainstorm Profile. (2022-06-23)[2024-12-01]. http://www.mohurd.gov.cn.
|
/
〈 |
|
〉 |