华南丘陵山区群发性滑坡—泥石流灾害链发育特征与危险性评价——以粤西高州马贵河流域为例
沈秋华(1981―),男,江苏南通人,硕士,高级工程师,主要从事水工环地质、岩土工程等研究,(E-mail)15800019678@163.com; |
收稿日期: 2024-12-01
修回日期: 2025-01-08
网络出版日期: 2025-04-15
基金资助
国家自然科学基金项目(42271091)
广东省自然科学基金-青年提升项目(2024A1515030114)
Characteristics and Risk Assessment of Group Landslide-Debris Flow Disaster Chain in the Hilly Mountains of South China: A Case Study of Magui River Basin in Gaozhou, Western Guangdong
Received date: 2024-12-01
Revised date: 2025-01-08
Online published: 2025-04-15
文章以粤西高州马贵河流域“2010.9.21”特大滑坡泥石流灾害为例,从灾害链触发、传递和累积放大角度出发,分析该次灾害事件中滑坡—泥石流灾害链的演化特征;基于小流域单元,从滑坡—泥石流灾害链的启动条件、累积放大条件入手,建立以累积放大效应为导向的灾害链危险性评价指标体系;利用综合指数模型对滑坡—泥石流灾害链的危险性进行评估,用实际调查结果进行验证。结果表明:1)马贵河流域滑坡—泥石流灾害链具有多沟汇集,冲击力大,地形起伏度大等特点;在物源区,滑坡在失稳过程中直接转化为泥石流,经过短距离流动汇入泥石流支沟,多条泥石流支沟在沿途中接受滑坡汇集汇入主沟谷,经流通区势能加速后冲出沟口,在沟口低缓地形区产生大面积扇形堆积,造成居民房屋、农田等遭受严重淤积。2)马贵河流域滑坡—泥石流灾害链的危险性以中危险性为主,仅1处小流域处在极高危险区。3)评价结果与实地调查结果高度一致,文章提出的考虑累积放大效应的灾害链危险性评估方法可靠,可以为滑坡—泥石流灾害链的风险评估提供参考。
沈秋华 , 王钧 , 黎昊 , 宫清华 , 黎念卿 , 李景富 , 袁少雄 , 刘博文 . 华南丘陵山区群发性滑坡—泥石流灾害链发育特征与危险性评价——以粤西高州马贵河流域为例[J]. 热带地理, 2025 : 1 -13 . DOI: 10.13284/j.cnki.rddl.20240793
The current risk assessment of single landslides and debris flow disasters ignores the increasing supply, accumulation, and superposition amplification effects of disasters from top to bottom, resulting in a serious underestimation of the risk of landslide-debris flow disaster chains. This study takes the "2010.9.21" mega-landslide debris flow disaster in the Magui River Basin in Gaozhou, western Guangdong as a case study. A landslide-debris flow disaster chain risk assessment index system, guided by the cumulative amplification effect, was established from the perspective of disaster chain initiation, transmission, and cumulative amplification. A comprehensive index model was used to scientifically evaluate the risk of the disaster chain, and actual investigation results were used for verification. The results are as follows: 1) The landslide-debris flow disaster chain in the Magui River Basin is characterized by multi-ditch collection, high impact force, and major terrain fluctuation. The landslide in the starting area is directly transformed into a debris flow during the instability process and flows into the debris flow branch ditch over a short distance. Several debris-flow branches received landslides along the path, converging into the main ditch. After potential energy accelerates through the circulation area, the flow rushes out of the ditch, leading to a large area of fan-shaped accumulations in the low- and slow-terrain areas, causing serious damage to residential houses and farmland. 2) A total of one small watershed unit carries an extremely high risk, accounting for 2.04% of the total number of small watersheds. The extremely high-risk area covers 3.64 km2, accounting for 2.24% of the total area. It is mainly distributed in a small watershed east of Liutang Village. There were eight small watersheds in high-risk areas, accounting for 16.33% of the total small watershed number. The dangerous area covers an area of 20.50 km2, accounting for 12.62% of the total area. Most watersheds are concentrated in Langlian Village, Shenshui Village, Makeng Village, and northern Longkeng Village in the Middle East region of Liutang Village. The number of small watersheds in the medium-risk area was 18, accounting for 36.73% of all the small watersheds, and the total area covered by dangerous area was 81.22 km2, accounting for approximately 44.90% of the total study area. The medium-risk areas were widely distributed within the scope of the study, especially in the southern part of Longkeng Village, most of the small watersheds of Liutang Village, the southern part of Langlian Village, Magui Village, Chengdong Village, Gancheng Village, the central area of Daxi Village, Houyuan Village, and Shanxin Village. There were 22 small watersheds in the low-risk area, accounting for 48.98% of the total number of small watersheds. The low-risk area covers 57.07 km2, accounting for 35.13% of the total study area. It is mainly distributed in the small watersheds of Shanxin Village, Houyuan Village South, Yadong Village South, and Zhoukeng Village in the northeast; Daxi Village in the west; Hemudong Village in the central region; and Longkeng Village in the south. 3) The evaluation results of this study were verified using actual investigation data, which showed high consistency with field survey results, thereby confirming the credibility of the method employed in this study. The index system and evaluation approach for the risk assessment of mass landslide-debris flow disaster chains proposed in this paper can serve as a reference for risk studies of landslide-debris flow disaster chains in South China and other similar areas.
表1 群发性滑坡—泥石流灾害链危险性评估指标体系Table 1 The hazard assessment index system of group landslide-debris flow disaster |
总目标层 | 一级 指标层 | 指标层 | 指标含义与计算说明 |
---|---|---|---|
群发性 滑坡— 泥石流 灾害链 危险性 评估 指标 体系 | 启 动 条 件 | 流域面积/km2 | 流域面积能适当地反映流域的汇流状况和产沙量。一般情况下,流域面积越大,产沙量越多,而产沙量的多少会影响流域内物源储量,流域面积越大,群发性事件发生的危险性越大,为正向指标。赋值为:A:严重(>6)得分5、B:中等(3~6)得分4、C:轻微(1~3)得分3、D:一般(<1)得分1。 |
流域 高差/m | 该指标表示切口深度和地表剥蚀程度,反映流域构造活动强度和能量条件,高差越大,越易发生群发性滑坡—泥石流灾害链,为正向指标。赋值为:A:严重(>800)得分4、B:中等(500~800)得分3、C:轻微(200~500)得分2、D:一般(<200)得分1。 | ||
沿沟松散 物质储量/ (105 m3) | 该指标综合描述松散固体物质补给的范围和可能补给量,影响滑坡—泥石流的规模大小,其值越大,表明流域内松散固体物质补给的条件越好,危险性也越大,为正向指标。赋值为:A:严重(>30)得分14、B:中等(10~30)得分11、C:轻微(5~10)得分7、D:一般(<5)得分1。 | ||
产沙区 松散物 平均厚度/m | 该指标在一定程度上反映产沙区可提供的物源量以及灾害链发生时产沙区的泥沙补给能力,该值越大,说明群发性灾害越易发,为正向指标。赋值为:A:严重(>10)得分8、B:中等(9~10)得分6、C:轻微(8~9)得分4、D:一般(<8)得分1。 | ||
24 h最大 降雨量/mm | 反映短时间降雨强度,短历时降雨强度大时可以促使积累的滑坡物质在短时间内转化为泥石流,进而爆发群发性灾害,其值越大,说明灾害危险性也越大,为正向指标。赋值为:A:严重(>200)得分10、B:中等(150~200)得分7、C:轻微(100~150)得分3、D:一般(<100)得分1。 | ||
累 积 放 大 条 件 | 主沟长度/km | 主沟越长,越利于增加水量,滑坡松散堆积体越容易被搬运,并和径流掺混转化为泥石流灾害,滑坡—泥石流灾害链越容易发生,危险性也越大,为正向指标。赋值为:A:严重(>4)得分4、B:中等(2.5~4)得分3、C:轻微(1~2.5)得分2、D:一般(<1)得分1。 | |
流域切割密度/(km·km-2) | 该指标越大的地区,不稳定坡面越多,滑坡越不稳定,在强降雨作用下越容易发生滑坡灾害,进而可以转化为泥石流的物源也越多,滑坡—泥石流灾害链的危险性也越大,为正向指标。赋值为:A:严重(>2.2)得分4、B:中等(1.8~2.2)得分3、C:轻微(1.6~1.8)得分2、D:一般(<1.6)得分1。 | ||
泥沙补给段长度比/(km·km-1) | 该指标指泥沙沿程补给长度与主沟长度之比,泥沙沿程补给长度是沿主沟长度范围内两岸及沟槽底部泥沙补给段(如滑坡堆积体)的累计长度,该值越大,说明沟道内可以转化为泥石流的堆积物越多,滑坡—泥石流灾害链越容易发生,为正向指标。赋值为:A:严重(>0.6)得分16、B:中等(0.45~0.6)得分12、C:轻微(0.3~0.45)得分8、D:一般(<0.3)得分1。 | ||
沟道弯曲度(km·km-1) | 该指标是主沟实际长度与主沟直线长度之比,反映沟道堵塞状况,堵塞越严重,累积放大效应也越大,使其规模和破坏性大大增加,为正向指标。赋值为:A:严重(>1.8)得分4、B:中等(1.4~1.8)得分3、C:轻微(1.2~1.4)得分2、D:一般(<1.2)得分1。 |
图7 马贵河流域滑坡—泥石流灾害链危险性分区Fig.7 Hazard zoning of landslide-debris flow disaster chain in the Magui River Basin |
表2 滑坡—泥石流灾害链危险程度分区情况Table 2 Landslide-debris flow disaster chain hazard degree zoning table |
危险程度 | 指数区间 | 主要分布区域 | 面积/ km2 | 面积 占比/% | 评估 总面积/km2 |
---|---|---|---|---|---|
低危险 | [26, 34.98] | 主要分布在马贵河流域北部山心村、厚园村南部、垭垌村南部,东北部周坑村、 西部大西村、中部河木垌村以及南部龙坑等部分地区的的小流域 | 57.07 | 35.13 | 162.43 |
中危险 | (34.98, 43.97] | 主要分布南部的龙坑村东部、六塘村大部、朗练村南部、马贵镇、埕垌村、甘埇村、大西村中部、厚园村、山心村等区域的小流域单元 | 81.22 | 50.01 | |
高危险 | (43.97, 49.09] | 主要分布在六塘村中东部、深水村、马坑村、朗练村、龙坑村北部的小流域、 大西村南部的小流域 | 20.50 | 12.62 | |
极高危险 | (49.09, 55] | 主要分布在主分布六塘村东部的小流域 | 3.64 | 2.24 |
1 https://search.asf.alaska.edu/#/
沈秋华:论文整体撰写与修改;
王 钧:梳理研究内容和研究思路;
黎 昊:收集资料与分析数据;
宫清华:确定论文选题、研究内容和审阅总体论文;
黎念卿:制作与修改论文图件;
李景富:核对数据与修改论文;
袁少雄:论文审稿意见修改;
刘博文:论文数据处理和论文修改。
Bai H L, Feng W K, Yi X Y, Fang H Y, Wu Y Y, Deng P C, Dai H C, and Hu R. 2021. Group-Occurring Landslides and Debris Flows Caused by the Continuous Heavy Rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3): 3181-3201.
|
Calista M, Menna V, Mancinelli V, Sciarra N, and Miccadei E. 2020. Rockfall and Debris Flow Hazard Assessment in the SW Escarpment of Montagna del Morrone Ridge (Abruzzo, Central Italy). Water, 12(4): 1206. ]
|
Chen J Y, Gong Q H, Wang J, and Yuan S Y. 2024. Damage Cause and Mechanism of Well-Vegetated Soil Slopes under Extreme Rainfall: A Case Study. Frontiers in Earth Science, 12: 1402798.
|
陈敬业,王钧,宫清华,黎昊,李子豪. 2023. 植被增渗效应对华南地区花岗岩残积土浅层滑坡的影响机理研究——以河源市龙川县为例. 水文地质工程地质,50(3):115-124.
Chen Jingye, Wang Jun, Gong Qinghua, Li Hao, and Li Zihao. 2023. Influence Mechanism of Vegetation Infiltration Effect on Shallow Landslides of Granite Residual Soil. Hydrogeology & Engineering Geology, 50(3): 115-124.
|
陈文鸿,余斌,叶鹏,郭朝旭,柳侃,叶龙珍,何元勋. 2024. 福建区域浅层滑坡诱发沟谷型泥石流灾害预测. 自然灾害学报,33(5):12-21.
Chen Wenhong, Yu Bin, Ye Peng, Guo Chaoxu, Liu Kan, Ye Longzhen, and He Yuanxun. 2024. Regional Prediction of Gully-Type Debris Flow Caused by Shallow Landslides in Fujian. Journal of Natural Disasters, 33(5): 12-21.
|
曹鹏,侯圣山,陈亮,冯振,王立朝,李昂,刘军友.2021.基于数值模拟的群发性泥石流危险性评价——以甘肃岷县麻路河流域为例.中国地质灾害与防治学报,32(2):101-110.
Cao Peng, Hou Shengshan, Chen Liang, Feng Zhen, Wang Lichao, Li Ang, and Liu Junyou. 2021. Risk Assessment of Mass Debris Flow Based on Numerical Simulation: An Example from the Malu River Basin in Min County. The Chinese Journal of Geological Hazard and Control, 32(2): 101-110.
|
冯文凯,贾邦中,吴义鹰,吴钟腾,白慧林.2022.低山丘陵区典型滑坡—泥石流链生灾害特征与成灾机理.中国地质灾害与防治学报,33(1):35-44.
Feng Wenkai, Jia Bangzhong, Wu Yiying, Wu Zhongteng, and Bai Huiling. 2022. Characteristics and Mechanism of Landslide-Debris Flow Chain Disaster in Low Mountain and Hilly Terrain. The Chinese Journal of Geological Hazard and Control, 33(1): 35-44.
|
广东省自然资源厅. 2023. 广东省乡镇(街道)地质灾害风险调查评价技术要求(1:10 000). (2024-06-09)[2025-03-20]. https://www.doc88.com/p-21699642553505.html.
Department of Natural Resources of Guangdong Province. 2023. Technical Requirements for Geological Hazard Risk Investigation and Evaluation of Townships (Streets) in Guangdong Province (1:10 000). (2024-06-09) [2025-03-20]. https://www.doc88.com/p-21699642553505.html.
|
广东省有色地质环境中心. 2023. 广东省重点乡镇1:1万地质灾害风险调查评价(高州市马贵镇)成果报告. 广州:广东省有色地质环境中心.
Guangdong Province Nonferrous Geological Environment Center. 2023. Guangdong Province Key Township 1: 10,000 Geological Hazard Risk Investigation and Evaluation (Gaozhou Magui Town) Results Report. Guangzhou: Guangdong Province Nonferrous Geological Environment Center.
|
胡华,吴轩,张越.2021.基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析.中国地质灾害与防治学报,32(5):92-97.
Hu Hua, Wu Xuan, and Zhang Yue. 2021. Experimental Study on Slope Collapse Characteristics of Granite Residual Soil Slope under Heavy Rainfall. The Chinese Journal of Geological Hazard and Control, 32(5): 92-97.
|
贾邦中,吴义鹰,冯文凯,白慧林,薛正海,赵家琛.2024.龙川县米贝村1#泥石流灾害特征与运动过程.科学技术与工程,24(9):3576-3585.
Jia Bangzhong, Wu Yiying, Feng Wenkai, Bai Huilin, Xue Zhenghai, and Zhao Jiachen. 2024. 1# Debris Flow Disaster Characteristics and Movement Process in Mibei Village, Longchuan County. Science Technology and Engineering, 24(9): 3576-3585.
|
罗毅,李德文,姜文亮,李林林,焦其松,田云锋,李强,李永生.2024.2023年积石山6.2级地震诱发的中川乡泥石流灾害过程与成因分析.地震工程学报,46(4):802-817.
Luo Yi, Li Dewen, Jiang Wenliang, Li Linlin, Jiao Qisong, Tian Yunfeng, Li Qiang, and Li Yongsheng. 2024. Process and Causes of the Debris Flow in Zhongchuan Township Induced by Jishishan Ms 6.2 Earthquake in 2023. China Earthquake Engineering Journal, 46 (4): 802-817.
|
刘艳辉,温铭生,苏永超,许凤雯.2016.台风暴雨型地质灾害时空特征及预警效果分析.水文地质工程地质,43(5):119-126.
Liu Yanhui, Wen Mingsheng, Su Yongchao, and Xu Fengwen. 2016. Characteristics of Geo-Hazards Induced by Typhoon Rainstorm and Evaluation of Geo-Hazards Early Warning. Hydrogeology & Engineering Geology, 43(5): 119-126.
|
龙艳梅,宋章,王玉峰,程谦恭,李坤,吴越.2022.基于物理模型试验的碎屑流流态化运动特征分析.水文地质工程地质,49(1):126-136.
Long Yanmei, Song Zhang, Wang Yufeng, Cheng Qiangong, Li Kun, and Wu Yue. An Analysis of Flow-Like Motion of Avalanches Based on Physical Modeling Experiments. Hydrogeology & Engineering Geology, 49(1): 126-136.
|
林文,周伟,李靖,杨莉,唐泽.2022.基于Flow-R和FLO-2D的沟谷型泥石流危险性评价.人民长江,53(5):143-148.
Lin Wen, Zhou Wei, Li Jing, Yang Li, and Tang Ze. 2022. Gully Debris Flow Hazard Assessment Based on Flow-R and FLO-2D Coupling Models. Yangtze River, 53(5): 143-148.
|
刘府生,周瑞宸,孙红林,胡卸文,黎尤,徐玉龙.2023.基于RAMMS的冰湖溃决型泥石流演进模拟及危害性.科学技术与工程,23(33):14123-14132.
Liu Fusheng, Zhou Ruichen, Sun Honglin, Hu Xiewen, Li You, and Xu Yulong. 2023. Evolution Process Simulation and Hazard Research of Debris Flow Induced by Glacier Lake out Burst Based on RAMMS. Science Technology and Engineering, 23(33): 14123-14132.
|
庞海松,谢骏锦,张小明,王官贺,张明.2024.基于RAMMS数值模拟的短时强降雨型泥石流危险性评价.地质科技通报,43(2):215-225.
Pang Haisong, Xie Junjin, Zhang Xiaoming, Wang Guanhe, and Zhang Ming. 2024. Hazard Assessment of Debris Flow Induced by Short-Time Heavy Rainfall Based on RAMMS Numerical Simulation. Bulletin of Geological Science and Technology, 43(2): 215-225.
|
潘建华,彭贵芬,彭俊,舒康宁.2012.基于模糊综合评判的汶川8.0级地震重灾区滑坡泥石流气候风险评估.灾害学,27(1):10-16.
Pan Jianhua, Peng Guifen, Peng Jun, and Shu Kangning. 2012. Risk Assessment of Landslide and Debris Flow in Main Disaster Area of Wenchuan Earthquake Based on Fuzzy Integrated Evaluation. Journal of Catastrophology, 27(1): 10-16.
|
孙蕊,丁雨虹,郭海燕,徐金霞.2022.基于GIS的四川省降水诱发型滑坡泥石流风险区划.高原山地气象研究,42(3):111-116,140.
Sun Rui, Ding Yuhong, Guo Haiyan, and Xu Jinxia. 2022. GIS-Based Zoning of Rainfall-Induced Landslide and Debris Flow Risk in Sichuan Province. Plateau and Mountain Meteorology Research, 42(3): 111-116, 140.
|
王翔弘绅,余建华,胡桂胜,杨志全.2024.滑坡—泥石流灾害链特征分析与风险评价——以川西石棉县马颈子沟为例.安全与环境工程,31(1):124-134,149.
Wang Xianghongshen, Yu Jianhua, Hu Guisheng, and Yang Zhiquan. 2024. Characteristics Analysis and Risk Assessment of Landslide-Debris Flow Disaster Chain-Taking Majingzi Gully, Shimian County, Western Sichuan as an Example. Safety and Environmental Engineering, 31(1): 124-134, 149.
|
王钧,宫清华,袁少雄,熊海仙.2017a.耦合地貌信息熵和斜坡单元物质响应率的泥石流危险性分析.科学技术与工程,17(16):21-27.
Wang Jun, Gong Qinghua, Yuan Shaoxiong, and Xiong Haixian. 2017a. Debris Flow Hazard Assessment by Coupling Geomorphic Information Entropy and Response Rate of Watershed Unit Material. Science Technology and Engineering, 17(16): 21-27.
|
王钧,宫清华,熊海仙.2017b.粤西低山丘陵区崩塌滑坡灾害易发性分析.人民长江,48(10):47-53.
Wang Jun, Gong Qinghua, and Xiong Haixian. 2017b. Susceptibility Assessment of Collapse and Landslide Disasters in Low Mountain and Hilly Areas of West Guangdong. Yangtze Rive, 48(10): 47-53.
|
Wang J, Gong Q H, Yuan S X, and Chen J. 2023. Combining Soil Macropores Flow with Formation Mechanism to the Development of Shallow Landslides Warning Threshold in South China. Frontiers in Earth Science, 10: 1048427.
|
Wu Z B, Li H, Yuan S X, Gong Q H, Wang J, and Zhang B. 2023. Mask R-CNN–Based Landslide Hazard Identification for 22. 6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China. Remote Sensing, 15: 4898.
|
王永喜,夏兵.2012.粤西台风灾区水土保持生态修复策略和措施-以高州市马贵镇为例.中国水土保持科学,10(1):88-93.
Wang Yongxi and Xia Bing. 2012. Eco-Restoration Strategies and Measures for the Soil and Water Conservation of Typhoon-Hit Areas in Western Guangdong Province: A Case Study of Magui Town, Gaozhou City. Science of Soil and Water Conservation, 10(1): 88-93.
|
Xiong K, Adhikari B R, Stamatopoulos C A, Zhan Y, Wu S, Dong Z, and Di B. 2020. Comparison of Different Machine Learning Methods for Debris Flow Susceptibility Mapping: A Case Study in the Sichuan Province, China. Remote Sensing, 12(2): 295. ]
|
项良俊.2014.金沙水电站坝区流域肖家沟泥石流的三维流场数值模拟及风险评价.长春:吉林大学.
Xiang Liangjun. 2014. Numerical Simulation of Three-Dimensional Flow Field and Risk Assessment at Xiaojiagou Debris Flow of the Basin of Jinsha Hydropower Dam Area.Changchun: Jilin University.
|
Yang H J, Yang T Q, Zhang S J, Zhao F H, Hu K H, and Jiang Y L. 2020. Rainfall-Induced Landslides and Debris Flows in Mengdong Town, Yunnan Province, China. Landslides, 17(4): 931-941.
|
Yang G L, Zhao L H, Qin Y G, Yang Tao, and Chen S A. 2025. Clustered landslides Induced by Rainfall in Jiangwan Town, Shaoguan City, Guangdong Province, China. Landslide News, 22: 1325-1338
|
严琦,张琪.2023.贵州省黔东南州降雨型泥石流风险评估.气象与减灾研究,46(2):141-148.
Yan Qi and Zhang Qi. 2023. Risk Assessment of Rainfall Induced Debris Flow in Qiandongnan Prefecture of Guizhou Province. Meteorology and Disaster Reduction Research, 46(2): 141-148.
|
张添锋,郭朝旭.2021.福建山区泥石流临界降雨阈值.山地学报,39(5):701-709.
Zhang Tianfeng and Guo Chaoxu. 2021. Rainfall Threshold of Debris Flow in Fujian Mountainous Area, China. Mountain Research, 39(5): 701-709.
|
种艳,陈冠,孟兴民,岳东霞,张毅,郭富赟,李亚军,曾润强,赵岩,边世强,杨云鹏,金佳成,黄逢春. 2022. 高山峡谷区滑坡—泥石流灾害链成灾模式与危险性评价——以舟曲立节为例. 兰州大学学报(自然科学版),58(3):372-384.
Chong Yan, Chen Guan, Meng Xingmin, Yue Dongxia, Zhang Yi, Guo Fuyun, Li Yajun, Zeng Runqiang, Zhao Yan, Bian Shiqiang, Yang Yunpeng, Jin Jiacheng, and Huang Fengchun. 2022. Analysis of the Transformation Mechanism and Prediction of a Landslide Debris Flow Multi-Hazards Chain in an Alpine Canyon Area: A Case Study in Zhouqu. Journal of Lanzhou University(Natural Sciences), 58(3): 372-384.
|
/
〈 |
|
〉 |