基于CMIP6的广西西江流域未来干旱变化特征与人口暴露度预估
秦年秀(1976—),女,广西桂林人,教授,研究方向为气候变化与风险管理,(E-mail)qinnianxiu@nnnu.edu.cn; |
收稿日期: 2024-09-08
修回日期: 2024-12-30
网络出版日期: 2025-04-17
基金资助
广西自然科学基金项目(2022GXNSFAA035611)
广西重点研发计划项目(桂科AB22080060)
Future Drought Change Characteristics and Population Exposure Estimation in the Xijiang River Basin of Guangxi Based on CMIP6
Received date: 2024-09-08
Revised date: 2024-12-30
Online published: 2025-04-17
文章利用CMIP6气候模式和人口预测数据,预估了3种共享社会经济路径(SSPs)情景下广西西江流域2021—2100年干旱变化以及人口暴露度。研究发现:1)CMIP6多模式耦合平均法在预测气候变量和干旱事件具有较高有效性。未来,西江流域气温和降水在不同情景下均呈上升趋势,气候变化影响愈发显著。2)通过SPEI指数分析,发现西江流域历史与未来干旱化趋势明显增加,不同情景下未来干旱的变化速率、发生时间、频率、强度等特征存在显著差异、变化复杂。低排放情景下干旱有望缓解,而高排放情景下干旱将全面加剧。3)西江流域未来不同程度干旱空间变化差异明显。低排放情景远期干旱基本消失,中等排放情景影响范围和强度均可能加剧,高排放情景则全面恶化,干旱态势严峻。4)人口暴露度与不同排放情景高度相关,低排放情景下人口暴露度显著降低,中、高排放情景下则大幅增加,尤其是远期重旱人口暴露度激增。5)气候变化是影响人口暴露度的主要因素,但人口增长与结构变化亦不容忽视,需制定差异化适应措施,通过积极减排和可持续发展路径降低干旱风险。
秦年秀 , 文凤 , 汪军能 , 何继业 , 姜彤 . 基于CMIP6的广西西江流域未来干旱变化特征与人口暴露度预估[J]. 热带地理, 2025 : 1 -16 . DOI: 10.13284/j.cnki.rddl.20240595
Under the influence of climate change, drought poses a novel and urgent challenge to sustainable development in the humid regions of southern China. Therefore, it is essential to estimate future drought changes and population exposure comprehensively. Using CMIP6 climate models and population forecast data, we estimated drought variations and population exposure in the Xijiang River Basin of Guangxi from 2021 to 2100 under three scenarios of Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The findings are as follows: (1) By employing Taylor diagrams to evaluate the multi-model ensemble mean method (MME) of 18 CMIP6 climate models, we found that the method effectively simulated temperature and precipitation in the Xijiang River Basin, reducing the uncertainty associated with single-model simulations. Under all future scenarios, temperature and precipitation in the Xijiang River Basin are projected to increase, with effects of climate change becoming more pronounced in this region. (2) Using the Standardized Precipitation Evapotranspiration Index (SPEI), we observed a significant increasing trend in aridification in both historical and future periods. Significant differences and complex changes in the rate, occurrence time, frequency, intensity, and other drought characteristics were observed under various scenarios. Droughts are expected to be alleviated under low-emission scenarios but intensify comprehensively under high-emission scenarios. (3) The spatial variability of drought in the Xijiang River Basin will differ significantly under different scenarios. In low-emission scenarios, the intensity and extent of droughts nearly disappear in the long-term. Under medium-emission scenarios, the intensity and extent of droughts may increase. Drought events in this region are severe and worsen comprehensively, under high-emission scenarios, and the long-term impact will be extensive and serious. Drought events in this region are influenced by global climate change and are closely linked to the specific socioeconomic development path of the area. (4) Future, population exposure to drought will be highly correlated with different emission scenarios in the Xijiang River Basin. Under low-emission scenarios, the total population affected by droughts decreased. However, under medium-emission scenarios, the population exposed to each drought level will substantially increase in the medium- to long-term, and the spatial distribution will be more complex. In high-emission scenarios, although the exposure of populations may decrease in the short-term owing to extreme weather events, it will sharply increase in the medium- to long-term, especially with a sharp rise in exposure to severe droughts in the long-term. Climate change is the main factor affecting population exposure to drought; however, emission strategies are fundamental drivers, and population growth and structural changes cannot be ignored. Therefore, emission reduction measures play a key role in mitigating the risk of drought under the impact of global climate change. It is urgent to promote the transformation of low-carbon development models, strengthen regional coordination, and formulate adaptive strategies. This study provides scientific evidence for water resource management and drought response strategies in the Xijiang River Basin, and is of great significance for regional sustainable development.
表1 18个降尺度CMIP6气候模式基本信息Table 1 Basic information of 18 downscaled CMIP6 climate models |
模式名 | 国家(地区) |
---|---|
ACCESS-CM2 | 澳大利亚 |
ACCESS-ESM1-5 | 澳大利亚 |
CanESM5 | 加拿大 |
CMCC-CM2-SR5 | 意大利 |
CMCC-ESM2 | 意大利 |
EC-Earth3-Veg-LR | 欧洲 |
EC-Earth3 | 欧洲 |
GFDL-ESM4 | 美国 |
INM-CM4-8 | 俄罗斯 |
INM-CM5-0 | 俄罗斯 |
IPSL-CM6A-LR | 法国 |
MIROC6 | 日本 |
MPI-ESM1-2-HR | 德国 |
MPI-ESM1-2-LR | 德国 |
MRI-ESM2-0 | 日本 |
NorESM2-LM | 挪威 |
NorESM2-MM | 挪威 |
TaiESM1 | 中国 |
秦年秀:论文选题,框架设计,论文撰写与修改;
文 凤:数据收集与分析,论文初稿撰写与修改;
汪军能:论文撰写过程指导、定稿审阅及修改;
何继业:数据分析,图件制作与修改,文字校对;
姜 彤:研究方案设计,论文撰写过程指导与修改指导。
衷心感谢两位匿名评审专家在审阅论文过程中投入的大量时间与精力,对本文的研究方法合理性、数据可靠性验证、模型应用适配性以及结果呈现等方面提出了宝贵的修改意见,使本文质量得到显著提升。参考文献(References):
安洁,付博,李玮,彭思源,李本纲. 2020. 东亚地区典型极端气候指标未来预估及高温下人口暴露度研究. 北京大学学报(自然科学版),56(5):884-892.
An Jie, Fu Bo, Li Wei, Peng Siyuan, and Li Bengang. 2020. Future Prediction of Typical Extreme Climatic Indices and Population Exposure to High Temperature in East Asia. Acta Scientiarum Naturalium Universitatis Pekinensis, 56(5): 884-892.
|
陈子燊. 2020. 珠江流域干旱时空变化的经验诊断分析. 中山大学学报(自然科学版),59(4):33-42.
Chen Zishen. 2020. Empirical Diagnostic Analysis on Spatial and Temporal Variations of Droughts in the Pearl River Basin, China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 59(4): 33-42.
|
戴君,胡海珠,毛晓敏,张霁. 2023. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析. 干旱区研究,40(10):1547-1562.
Dai Jun, Hu Haizhu, Mao Xiaomin, and Zhang Ji. 2023. Future Climate Change Trends in the Shiyang River Basin Based on the CMIP6 Multi-Model Estimation Data. Arid Zone Research, 40(10): 1547-1562.
|
Das J, Das S, and Umamahesh N V. 2023. Population Exposure to Drought Severities under Shared Socioeconomic Pathways Scenarios in India. Science of the Total Environment, 867: 161566.
|
Dikshit A, Pradhan B, and Huete A. 2021. An Improved SPEI Drought Forecasting Approach Using the Long Short-Term Memory Neural Network. Journal of Environmental Management, 283: 111979.
|
龚郑洁,雷勇,钟露露,武传号. 2024. 干旱胁迫下珠江流域植被响应的滞后效应及损失概率评估. 应用生态学报,35(4):1083-1091.
Gong Zhengjie, Lei Yong, Zhong Lulu, and Wu Chuanhao. 2024. Assessment of the Lagging Effect of Vegetation Response and Loss Probability in the Pearl River Basin under Drought Stress. Chinese Journal of Applied Ecology, 35(4): 1083-1091.
|
韩钦梅,吕建军,史培军. 2018. 湖北省暴雨人口暴露时空特征与贡献率研究. 灾害学,33(4):191-196.
Han Qinmei, Lyu Jianjun, and Shi Peijun. 2018. Spatial Temporal Characteristics and Contribution Rate of Rainstorm Population Exposure in Hubei. Journal of Catastrophology, 33(4): 191-196.
|
IPCC. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge: Cambridge University Press.
|
IPCC. 2021. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press.
|
Iyakaremye V, Zeng G, Yang X, Zhang G, Ullah I, Gahigi A, Vuguziga F, Asfaw T G, and Ayugi B. 2021. Increased High-Temperature Extremes and Associated Population Exposure in Africa by the Mid-21st Century. Science of the Total Environment, 790: 148162.
|
姜大膀,王晓欣. 2021. 对IPCC第六次评估报告中有关干旱变化的解读. 大气科学学报,44(5):650-653.
Jiang Dabang and Wang Xiaoxin. 2021. A Brief Interpretation of Drought Change from IPCC Sixth Assessment Report. Transactions of Atmospheric Sciences, 44(5): 650-653.
|
姜彤,赵晶,景丞,曹丽格,王艳君,孙赫敏,王安乾,黄金龙,苏布达,王润. 2017. IPCC共享社会经济路径下中国和分省人口变化预估. 气候变化研究进展,13(2):128-137.
Jiang Tong, Zhao Jing, Jing Cheng, Cao Lige, Wang Yanjun, Sun Hemin, Wang Anqian, Huang Jinlong, Su Buda, and Wang Run. 2017. National and Provincial Population Projected to 2100 under the Shared Socioeconomic Pathways in China. Climate Change Research, 13(2): 128-137.
|
金佳鑫,肖园园,金君良,朱求安,雍斌,季盈盈. 2021. 长江流域极端水文气象事件时空变化特征及其对植被的影响. 水科学进展,32(6):867-876.
Jin Jiaxin, Xiao Yuanyuan, Jin Junliang, Zhu Qiu'an, Yong Bin, and Ji Yingying. 2021. Spatial-Temporal Variabilities of the Contrasting Hydrometeorological Extremes and the Impacts on Vegetation Growth over the Yangtze River Basin. Advances in Water Science, 32(6): 867-876.
|
Jones B, O'Neill B C, Mcdaniel L, Mcginnis S, Mearns L O, and Tebaldi C. 2015. Future Population Exposure to US Heat Extremes. Nature Climate Change, 5(7): 652-655.
|
Li X, Fang G H, Wen X, Xu M, and Zhang Y. 2022. Characteristics Analysis of Drought at Multiple Spatiotemporal Scale and Assessment of CMIP6 Performance over the Huaihe River Basin. Journal of Hydrology: Regional Studies, 41: 101103.
|
李大鹏,慕鹏飞,白涛,黄强,黄生志,张迎. 2020. 基于标准化降水指数SPI的西江流域多尺度干旱特征及其驱动力分析. 西安理工大学学报,36(1):41-50.
Li Dapeng, Mu Pengfei, Bai Tao, Huang Qiang, Huang Shengzhi, and Zhang Ying. 2020. Meteorological Drought Characteristics and Driving Force Analysis of Xijiang River Basin Based on Variable Scale SPI. Journal of Xi'an University of Technology, 36(1): 41-50.
|
Liao X L, Xu W, Zhang J L, Li Y, and Tian Y G. 2019. Global Exposure to Rainstorms and the Contribution Rates of Climate Change and Population Change. Science of the Total Environment, 663: 644-653.
|
林文青,陈活泼,徐慧文,艾雅雯,何文悦,张大伟,王帆,毕吴瑕,王玮琦. 2023. 西南地区未来极端降水增加将导致其人口暴露风险加剧. 大气科学学报,46(4):499-516.
Lin Wenqing, Chen Huopo, Xu Huiwen, Ai Yawen, He Wenyue, Zhang Dawei, Wang Fan, Bi Wuxia, and Wang Weiqi. 2023. Significant Increase of Precipitation Extremes will Enlarge Its Population Exposure over Southwest China in the Future. Transactions of Atmospheric Sciences, 46(4): 499-516.
|
Liu Y, Zhu Y, Zhang L Q, Ren L L, Yuan F, Yang X L, and Jiang S H. 2020. Flash Droughts Characterization over China: From a Perspective of the Rapid Intensification Rate. Science of the Total Environment, 704: 135373.
|
刘清滢,王艳君,赵庆庆,王媛,高妙妮,姜彤. 2023. 长江中下游地区温湿复合热浪及人口暴露度研究. 气候与环境研究,28(6):573-582.
Liu Qingying, Wang Yanjun, Zhao Qingqing, Wang Yuan, Gao Miaoni, and Jiang Tong. 2023. Population Exposure to the Compound Temperature-Humidity Heatwaves in the Middle and Lower Reaches of the Yangtze River. Climatic and Environmental Research, 28(6): 573-582.
|
刘冉,孙劭,鞠蕾,王前锋,邹扬锋,张宇阳,缪丽娟. 2023. 黄淮海平原气象干旱的演化特征与时空规律. 农业工程学报,39(19):85-92.
Liu Ran, Sun Shao, Ju Lei, Wang Qianfeng, Zou Yangfeng, Zhang Yuyang, and Miao Lijuan. 2023. Evolutionary Characteristics and Spatiotemporal Trend of Meteorological Drought in the Huang-Huai-Hai Plain. Transactions of the Chinese Society of Agricultural Engineering, 39(19): 85-92.
|
罗蒙,徐非,李蒙,马思源,杨鹏武,黄玮. 2023. CMIP6模式对云南区域性干旱过程的模拟评估及预估. 热带气象学报,39(4):484-496.
Luo Meng, Xu Fei, Li Meng, Ma Siyuan, Yang Pengwu, and Huang Wei. 2023. Evaluation and Future Projection of Regional Drought Events in Yunnan Province Using CMIP6 Model Products. Journal of Tropical Meteorology, 39(4): 484-496.
|
Mondal S K, Huang J L, Wang Y J, Su B D, Zhai J Q, Tao H, Wang G J, Fischer T, Wen S S, and Jiang T. 2021. Doubling of the Population Exposed to Drought over South Asia: CMIP6 Multi-Model-Based Analysis. Science of the Total Environment, 771: 145186.
|
莫建飞,钟仕全,陈燕丽,孙明. 2018. 极端降水事件下广西流域洪涝社会经济暴露度分析. 灾害学,33(2):83-88.
Mo Jianfei, Zhong Shiquan, Chen Yanli, and Sun Ming. 2018. Study on Social-Economic Exposure Degree Model of Basin Flood Hazard of Extreme Precipitation Events in Guangxi. Journal of Catastrophology, 33(2): 83-88.
|
Qin N X, Wang J N, Gao L, Hong Y, Huang J L, and Lu Q Q. 2021. Observed Trends of Different Rainfall Intensities and the Associated Spatiotemporal Variations during 1958-2016 in Guangxi, China. International Journal of Climatology, 41: E2880-E2895.
|
屈艳萍,吕娟,张伟兵,苏志诚,李哲. 2018. 中国历史极端干旱研究进展. 水科学进展,29(2):283-292.
Qu Yanping, Lyu Juan, Zhang Weibing, Su Zhicheng, and Li Zhe. 2018. Progress in Research on Historical Extreme Drought in China. Advances in Water Science, 29(2): 283-292.
|
商守卫,王银堂,崔婷婷,李伶杰,刘勇,陈建东. 2022. 基于标准化降水指数的成都市气象干旱演变特征. 水电能源科学,40(12):26-29,63.
Shang Shouwei, Wang Yintang, Cui Tingting, Li Lingjie, Liu Yong, and Chen Jiandong. 2022. Evolution Characteristics of Meteorological Drought in Chengdu City Based on Standardized Precipitation Index. Water Resources and Power, 40(12): 26-29, 63.
|
Thrasher B, Wang W L, Michaelis A, Melton F, Lee T, and Nemani R. 2022. NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1): 262.
|
Tong S Q, Lai Q, Zhang J Q, Bao Y H, Lusi A, Ma Q Y, Li X Q, and Zhang F. 2018. Spatiotemporal Drought Variability on the Mongolian Plateau From 1980–2014 Based on the SPEI-PM, Intensity Analysis and Hurst Exponent. Science of the Total Environment, 615: 1557-1565.
|
童新华,梁俏,韦燕飞,韩振锋. 2018. 基于县域尺度的广西人口分布空间格局及时空分异研究. 大众科技,20(7):23-27.
Tong Xinhua, Liang Qiao, Wei Yanfei, and Han Zhenfeng. 2018. Study on the Spatial Distribution and Space-Time Differentiation of Population in the Counties of Guangxi. Popular Science, 20(7): 23-27.
|
Vicente-Serrano S M, Beguería S, and López-Moreno J I. 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7): 1696-1718.
|
Wang L B, Rohli R V, Lin Q G, Jin S F, and Yan X D. 2022. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability, 14(18): 11458.
|
Wang LY, Yuan X, Xie Z H, Wu P L, and Li Y H. 2016. Increasing Flash Droughts over China during the Recent Global Warming Hiatus. Scientific Reports, 6(1): 30571.
|
王岱,崔洋,王素艳,张雯. 2024. 1961—2020年宁夏干旱事件年代际变化及风险评估. 干旱区地理,47(5):785-797.
Wang Dai, Cui Yang, Wang Suyan, and Zhang Wen. 2024. Interdecadal Changes and Risk Assessment of Drought Events in Ningxia from 1961 to 2020. Arid Land Geography, 47(5): 785-797.
|
王芳,张晋韬. 2023. 21世纪中国温湿复合型热事件及其人口暴露度预估. 地理科学,43(7):1259-1269.
Wang Fang and Zhang Jintao. 2023. Projection of Population Exposure to Compound Extreme Heat-Humidity Events in China in the 21st Century. Scientia Geographica Sinica, 43(7): 1259-1269.
|
王天,涂新军,周宗林,赖荣标,谢星. 2022. 基于CMIP6的珠江流域未来干旱时空变化. 农业工程学报,38(11):81-90.
Wang Tian, Tu Xinjun, Zhou Zonglin, Lai Rongbiao, and Xie Xing. 2022. Spatiotemporal Variation of Future Droughts in the Pearl River Basin Using CMIP6. Transactions of the Chinese Society of Agricultural Engineering, 38(11): 81-90.
|
Watts N, Adger W N, Agnolucci P, Blackstock J, Byass P, Cai W, Chaytor S, Colbourn T, Collins M, and Cooper A. 2015. Health and Climate Change: Policy Responses to Protect Public Health. The Lancet, 386(10006): 1861-1914.
|
Wei Y H, She D X, Xia J, Wang G S, Zhang Q, Huang S Z, Zhang Y, and Wang T Y. 2024. Climate Change Dominates the Increasing Exposure of Global Population to Compound Heatwave and Humidity Extremes in the Future. Climate Dynamics, 62(7): 6203-6217.
|
Wilhite D A and Glantz M H. 1985. Understanding: The Drought Phenomenon: The Role of Definitions. Water International, 10(3): 111-120.
|
Wu B F, Ma Z H, and Yan N N. 2020. Agricultural Drought Mitigating Indices Derived from the Changes in Drought Characteristics. Remote Sensing of Environment, 244: 111813.
|
Wu F, Jiao D L, Yang X L, Cui Z Y, Zhang H S, and Wang Y H. 2023. Evaluation of NEX-GDDP-CMIP6 in Simulation Performance and Drought Capture Utility over China–Based on DISO. Hydrology Research, 54(5): 703-721.
|
吴佳,高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报,56(4):1102-1111.
Wu Jia and Gao Xuejie. 2013. A Gridded Daily Observation Dataset over China Region and Comparison with the other Datasets. Chinese Journal of Geophysics, 56(4): 1102-1111.
|
吴志勇,林青霞. 2016. 西江流域水文干旱时空特征分析. 水资源保护,32(1):51-56.
Wu Zhiyong and Lin Qingxia. 2016. Analysis on Spatial and Temporal Characteristics of Hydrological Drought in Xijiang River Basin. Water Resources Protection, 32(1): 51-56.
|
向燕芸,王弋,陈亚宁,张齐飞,张玉杰. 2024. 基于CMIP6模式的叶尔羌河流域未来水文干旱风险预估. 干旱区地理,47(5):798-809.
Xiang Yanyun, Wang Yi, Chen Yaning, Zhang Qifei, and Zhang Yujie. 2024. Prediction of Future Hydrological Drought Risk in the Yarkant River Basin Based on CMIP6 Models. Arid Land Geography, 47(5): 798-809.
|
闫妍,王钰,胡宝清,黄凯燕. 2019. 像元尺度上广西西江流域水资源可获取性综合评价. 水力发电,45(3):13-17.
Yan Yan, Wang Yu, Hu Baoqing, and Huang Kaiyan. 2019. Comprehensive Assessment of Water Accessibility in the Xijiang River Basin in Guangxi on Pixel Scale. Water Power, 45(3): 13-17.
|
Xin X G, Wu T W, Zhang J, Yao J C, and Fang Y J. 2020. Comparison of CMIP6 and CMIP5 Simulations of Precipitation in China and the East Asian Summer Monsoon. International Journal of Climatology, 40(15): 6423-6440.
|
Xu K, Qin G X, Niu J, Wu C H, Hu B X, Huang G R, and Wang P. 2019. Comparative Analysis of Meteorological and Hydrological Drought Over the Pearl River Basin in Southern China. Hydrology Research, 50(1): 301-318.
|
Xu Y, Zhang X, Hao Z C, Hao F H, and Li C. 2021. Projections of Future Meteorological Droughts in China under CMIP6 from a Three‐Dimensional Perspective. Agricultural Water Management, 252: 106849.
|
徐影,周波涛,吴婕,韩振宇,张永香,吴佳. 2017. 1.5~4℃升温阈值下亚洲地区气候变化预估. 气候变化研究进展,13(4):306-315.
Xu Ying, Zhou Botao, Wu Jie, Han Zhenyu, Zhang Yongxiang, and Wu Jia. 2017. Asian Climate Change in Response to Four Global Warming Targets. Climate Change Research, 13(4): 306-315.
|
Xue R F, Sun B, Li W L, Li H X, and Zhou B T. 2024. Future Changes in Compound Drought Events and Associated Population and GDP Exposure in China Based on CMIP6. Atmospheric and Oceanic Science Letters, 17(3): 100461.
|
杨雯倩,史培军,张钢锋,杨胜利. 2022. 西安高温热害人口暴露量及其受灾指数预估研究. 自然灾害学报,31(1):29-39.
Yang Wenqian, Shi Peijun, Zhang Gangfeng, and Yang Shengli. 2022. Study of Population Exposure to Extreme Heat and the Prediction of Disaster Index in Xi'an. Journal of Natural Disasters, 31(1): 29-39.
|
姚宁,蒋昆昊,谢文馨,张东彦,杨晓娟,于强. 2024. 气候变化背景下山西省气象干旱时空演变特征. 农业机械学报,55(1):270-281.
Yao Ning, Jiang Kunhao, Xie Wenxin, Zhang Dongyan, Yang Xiaojuan, and Yu Qiang. 2024. Temporal and Spatial Evolution of Drought Disasters in Shanxi Province under Background of Climate Change. Transactions of the Chinese Society for Agricultural Machinery, 55(1): 270-281.
|
袁飞,章益棋,刘懿,马明卫,张利敏,石佳勇. 2021. 基于标准化帕尔默干旱指数的西江流域干旱评估. 水资源保护,37(1):46-52.
Yuan Fei, Zhang Yiqi, Liu Yi, Ma Mingwei, Zhang Limin, and Shi Jiayong. 2021. Drought Assessment of Xijiang River Basin Based on Standardized Palmer Drought Index. Water Resources Conservation, 37(1): 46-52.
|
张立杰,李健. 2018. 基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征. 高原气象,37(2):560-567.
Zhang Lijie and Li Jian. 2018. Spatiotemporal Change of Drought at Various Time Scales Indicated by SPEI and SPI in Xijiang River Basin. Plateau Meteorology, 37(2): 560-567.
|
Zhang Y Q, You Q L, Ullah S, Chen C C, Shen L, and Liu Z. 2023. Substantial Increase in Abrupt Shifts between Drought and Flood Events in China Based on Observations and Model Simulations. Science of the Total Environment, 876: 162822.
|
Zhao F B, Wu Y P, Yin X W, Sun K, Ma S, Zhang S N, Liu S G, Wang W K, and Chen J. 2022. Projected Changes in Population Exposure to Drought in China under CMIP6 Forcing Scenarios. Atmospheric Environment, 282: 119162.
|
郑殿元,黄晓军. 2022. 中国县域高温人口暴露风险及其影响因素研究. 地域研究与开发,41(4):143-149.
Zheng Dianyuan and Huang Xiaojun. 2022. Population Exposure Risk of Heat Wave and Its Influencing Factors at County Level in China. Areal Research and Development, 41(4): 143-149.
|
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2017. 气象干旱等级:GB/T20481—2017. (2017-09-07)[2024-09-31]. https://www. cma. gov. cn/zfxxgk/gknr/flfgbz/bz/202209/t20220921_5098974. html.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. 2017. Grades of Meteorological Drought: GB/T20481-2017. (2017-09-07) [2024-09-31]. https://www. cma. gov. cn/zfxxgk/gknr/flfgbz/bz/202209/t20220921_5098974. html.
|
/
〈 |
|
〉 |