三元空间下数智赋能城市暴雨态势感知的组态路径研究
闫绪娴(1978—),女,山西朔州人,博士,教授,主要研究方向为应急管理与韧性城市,(E-mail)yanxux@163.com; |
收稿日期: 2024-11-19
修回日期: 2025-06-10
网络出版日期: 2025-06-19
基金资助
山西省2024年度研究生科研创新项目“三元空间视角下数智赋能城市暴雨态势感知的内在机理及匹配路径”(2024KY487)
国家社科学基金一般项目“我国城市暴雨内涝灾害形成机理、韧性评估及防治对策研究”(20BGL260)
山西省研究生教育创新计划支持“优秀研究生导师团队”(2024TD25)
Research on the Configuration Path of Digital-Intelligent Enabled Urban Rainstorm Situation Awareness in Ternary Space
Received date: 2024-11-19
Revised date: 2025-06-10
Online published: 2025-06-19
数智技术是提升城市暴雨态势感知能力的重要手段,从物理-信息-社会三元空间视角出发,通过fsQCA(Fuzzy-Set Qualitative Comparative Analysis)和LDA(Latent Dirichlet Allocation)的混合使用,解决数智手段赋能城市暴雨感知的路径问题,并探讨不同组态路径下的城市受灾特征。结果表明,实现高赋能水平存在3种模式:物理-信息-社会三元空间均衡型赋能、物理-社会空间主导的三元空间型赋能和物理-社会空间交互的二元空间型赋能。同时,一元空间的低赋能模式难以实现灾害的全面感知,验证了三元空间组态交叉的必要性。此外,LDA主题模型分析显示,不同的数智赋能模式匹配了不同受灾类型的城市,二元空间型赋能路径更适合致灾因子敏感型城市(如广州等),物理-社会空间主导的三元空间型赋能模式更匹配孕灾环境敏感型城市(如西安等),三元空间均衡型赋能模式更适合承灾体敏感型城市(如北京、上海等)。
闫绪娴 , 王俊丽 , 温烜 , 刘杨 . 三元空间下数智赋能城市暴雨态势感知的组态路径研究[J]. 热带地理, 2025 : 1 -13 . DOI: 10.13284/j.cnki.rddl.20240741
Against the backdrop of rapid urbanization and escalating risks posed by extreme rainstorms, the complexity of urban hydrological systems and limitations of fragmented data-driven approaches underscore the necessity of constructing integrated frameworks to enhance rainstorm situation awareness. Traditional methodologies typically rely on isolated physical monitoring, digital modeling, or social response mechanisms and fail to address the interdependencies among physical infrastructure, informational technologies, and social systems. This study aims to deepen our understanding of how digital and intelligent technologies can be configured across a physical–informational–social ternary space to achieve robust urban rainstorm governance by identifying context-specific empowerment paths and their applicability to diverse urban typologies. Guided by the theoretical framework of the physical–informational–social ternary space, this study employs a mixed-method approach combining fuzzy-set qualitative comparative analysis (fsQCA) and Latent Dirichlet Allocation (LDA) modeling to investigate the pathways through which digital and intelligent tools empower urban rainstorm perception and to explore the disaster-affected characteristics of cities under different configurational paths. By tracking 35 typical Chinese cities, the fsQCA analysis reveals three differentiated empowerment configurations: (1) Balanced ternary space empowerment (G1), which achieves high-efficiency empowerment through three-dimensional collaboration among physical space data integration (including real-time sensor networks for hydrological monitoring), informational space intelligent analysis (including machine-learning-based risk prediction models), and social space emergency response (including interagency coordination systems), relying on dynamic interactions across the three domains. (2) Physically–socially dominant ternary space empowerment (G2): Grounded in core conditions of multisource data integration (combining meteorological, topographical, and citizen-generated data) and high disaster perception efficiency, this configuration incorporates peripheral conditions of server-side intelligence (including cloud-based data analytics) and user-side participation (including mobile application-driven hazard reporting), emphasizing data diversity and user-centric empowerment. (3) Physically–socially interactive binary space empowerment (G3): Empowerment is realized through the binary coupling of multisource data integration and high perception efficiency as the core conditions, prioritizing the technical synergy between physical monitoring and informational processing. Concurrently, a single-dimensional, low-empowerment configuration, which relies on isolated spatial data or technologies, is found to be insufficient for comprehensive disaster perception, thus empirically validating the necessity of ternary space configurational intersections. LDA topic modeling further demonstrates that different digital-intelligent empowerment patterns align with distinct disaster-sensitive city types: G3 suits hazard-sensitive cities (including Guangzhou), G2 matches vulnerable cities (including Xi'an), and G1 benefits exposure-sensitive megacities (including Beijing and Shanghai). Theoretical contributions of this study include constructing a "ternary space for urban rainstorm situation awareness" framework, which systematically analyzes the effects of digital-intelligent empowerment through the coupling mechanism of real-time physical space perception, intelligent informational space processing, and optimized social space decision-making—thereby transcending the limitations of traditional technological determinism. Methodologically, the research overcomes the constraints of single-method approaches by retaining fsQCA's strength in causal necessity analysis and integrating LDA's capability for semantic theme identification, forming a complete explanatory chain of "causal mechanisms-adaptive paths-type characteristics." At a practical level, this study proposes differentiated implementation strategies that provide both theoretical foundations and practical guidance for the digital and intelligent enhancement of urban rainstorm situation awareness.
表1 数智赋能城市暴雨感知的前因变量和结果变量指标体系Table 1 The indicator system of antecedent variables and outcome variables for the digital and intelligent empowerment of urban rainstorm perception |
变量类型 | 一级指标 | 二级指标 | 三级指标 | 指标属性 | 权重 | 数据解释 |
---|---|---|---|---|---|---|
前 因 变 量 | 物理 空间 | 全面性的 集成技术X 11 | 暴雨要素预报产品空间分辨率/km | - | 0.805 | 反映自然灾害空间监测数据的精密程度 |
地面自动暴雨站网平均间距/km | - | 0.195 | 反映自然灾害地面监测数据的精密程度 | |||
多样性的 集成数据X 12 | 可融合灾害数据类型数目/种 | + | 0.594 | 反映应急指挥中心可融合的多源数据类型数量 | ||
协同部门数据类型/个 | + | 0.406 | 反映应急指挥中心可调控的应急联动部门数量 | |||
信息 空间 | 服务端的数智化 信息X 21 | 24 h晴雨天气预报准确率/% | + | 0.487 | 反映24 h晴雨天气预报的水平 | |
强对流天气预警提前量/min | + | 0.513 | 从发布灾害性天气预警到通过监测手段确认灾害性天气发生的时间间隔 | |||
用户端的数智化 信息X 22 | 暴雨服务公众覆盖率/% | + | 1.000 | 通过各种媒体传播渠道,使公众获取暴雨服务的覆盖率情况 | ||
社会 空间 | 社会的灾害 感知X 31 | 受灾群众基本生活得到 有效救助时间/h | - | 0.558 | 反映当地的灾害响应水平的指标 | |
应急救援队伍人数/人 | + | 0.442 | 反映当地的应急救援队伍规模的指标 | |||
结果 变量 | 赋能效果 | 年均自然灾害损失GDP占比/% | - | 0.697 | (自然灾害直接经济损失/全年GDP)×100 | |
公众暴雨服务满意度/分 | + | 0.303 | 主要评价公众对暴雨预报预警等各种服务的满意程度 |
|
表2 变量校准锚点及描述性统计Table 2 Variable calibration anchor points and descriptive statistics |
变量 | 模糊校准点 | 描述性统计 | ||||
---|---|---|---|---|---|---|
完全隶属/75% | 交叉点/50% | 完全不隶属/25% | 均值 | 标准差 | ||
全面性的集成技术 | 0.812 | 0.569 | 0.463 | 0.485 | 0.416 | |
多样性的集成数据 | 0.500 | 0.313 | 0.175 | 0.495 | 0.422 | |
服务端的数智化信息 | 0.551 | 0.434 | 0.277 | 0.493 | 0.394 | |
用户端的数智化信息 | 0.760 | 0.585 | 0.409 | 0.443 | 0.412 | |
社会的灾害感知 | 0.343 | 0.219 | 0.095 | 0.523 | 0.382 | |
赋能效果 | 0.801 | 0.644 | 0.544 | 0.508 | 0.410 |
表3 条件变量对于结果变量的必要性分析Table 3 The necessity analysis of conditional variables for outcome variables. |
条件变量 | 高赋能水平 | 低赋能水平 | |||
---|---|---|---|---|---|
一致性 | 覆盖度 | 一致性 | 覆盖度 | ||
全面性的集成技术 | 0.484 | 0.507 | 0.604 | 0.612 | |
~全面性的集成技术 | 0.630 | 0.621 | 0.514 | 0.491 | |
多样性的集成数据 | 0.616 | 0.631 | 0.462 | 0.459 | |
~多样性的集成数据 | 0.473 | 0.477 | 0.629 | 0.613 | |
服务端的数智化信息 | 0.539 | 0.556 | 0.537 | 0.526 | |
~服务端的数智化信息 | 0.549 | 0.551 | 0.555 | 0.538 | |
用户端的数智化信息 | 0.471 | 0.540 | 0.499 | 0.553 | |
~用户端的数智化信息 | 0.610 | 0.557 | 0.585 | 0.517 | |
社会的灾害感知 | 0.688 | 0.670 | 0.495 | 0.466 | |
~社会的灾害感知 | 0.451 | 0.480 | 0.649 | 0.668 |
|
表4 数智赋能城市暴雨感知的组态分析Table 4 Configuration analysis of digital and intelligent empowerment for urban rainstorm perception |
前因变量 | 高赋能水平 | 低赋能水平 | |||||
---|---|---|---|---|---|---|---|
G1 | G2 | G3 | D1 | D2 | D3 | ||
全面性的集成技术 | | ⊕ | ○ | ○ | ○ | ○ | |
多样性的集成数据 | ⊕ | | | ⊕ | ⊕ | ⊕ | |
服务端的数智化信息 | | ○ | ⊕ | ⊕ | ⊕ | ○ | |
用户端的数智化信息 | ⊕ | ○ | ⊕ | ⊕ | | ○ | |
社会的灾害感知 | | | | | ⊕ | | |
一致性 | 0.882 | 0.974 | 0.947 | 0.913 | 0.863 | 0.934 | |
原始覆盖度 | 0.298 | 0.193 | 0.193 | 0.318 | 0.225 | 0.172 | |
唯一覆盖度 | 0.140 | 0.082 | 0.020 | 0.066 | 0.042 | 0.072 | |
总体一致性 | 0.911 | 0.874 | |||||
总体覆盖度 | 0.587 | 0.558 |
|
表5 数智赋能城市暴雨感知的路径优劣对比Table 5 Comparison of the advantages and disadvantages of the paths for digital and intelligent empowerment of urban rainstorm perception |
路径模式 | 优势 | 劣势 |
---|---|---|
物理-信息-社会三元 空间均衡型赋能(G1) | 三元协同闭环优化灾害响应全链条;动态耦合机制抵御极端暴雨,降低损失率;数字孪生驱动系统迭代,降低技术更新成本 | 5G基站密度和专业人才要求高,限制中西部推广;高算力需求导致年均运维成本高;多源数据融合存在隐私风险,需强化数据安全防护 |
物理-社会空间主导的三元空间型赋能(G2) | 社交媒体实现预警信息秒级触达;多模态数据融合提升灾情识别准确率;社会成员参与,补充监测盲区 | AI模型需5年历史数据,新城市初期效果受限;多渠道导致信息过载与公众识别困难;城乡数字鸿沟导致农村覆盖率显著低于城市 |
物理-社会空间交互的二元空间型赋能(G3) | 无需复杂算法,初期成本较G1降低;人机协同实现老旧城区监测覆盖;社区参与数据采集提升预警接受度 | 依赖传统传感器导致暴雨预测误差率较高;单维数据集成难以应对多灾种叠加场景;人工干预导致响应效能滞后 |
表6 产生高赋能水平的组态的稳健性检验Table 6 Robustness Test of the Configurations that Generate a High Level of Empowerment |
前因变量 | 提高原始一致性至0.85 | 提高PRI至0.8 | ||||
---|---|---|---|---|---|---|
G1 | G2 | G3 | G1 | G2 | ||
全面性的集成技术 | | ⊕ | ○ | | ⊕ | |
多样性的集成数据 | ⊕ | | | ⊕ | | |
服务端的数智化信息 | | ○ | ⊕ | | ○ | |
用户端的数智化信息 | ⊕ | ○ | ⊕ | ⊕ | ○ | |
社会的灾害感知 | | | | | | |
一致性 | 0.882 | 0.974 | 0.947 | 0.949 | 0.974 | |
原始覆盖度 | 0.298 | 0.192 | 0.193 | 0.178 | 0.193 | |
唯一覆盖度 | 0.140 | 0.082 | 0.020 | 0.054 | 0.020 | |
总体一致性 | 0.911 | 0.964 | ||||
总体覆盖度 | 0.587 | 0.382 |
|
序号 | 城市 | 项目名称 | 代表性实践 |
---|---|---|---|
1 | 福建省厦门市 | “急”中生“智”:智慧应急何以助推协同之网——以厦门市为例 | 入选《2023中国新型智慧城市典型案例集》 |
2 | 山东省青岛市 | 青岛市城市安全风险综合监测预警项目 | |
3 | 天津市 | 天津市“智慧应急” | 应急管理部“智慧应急”试点建设 |
4 | 安徽省合肥市 | 合肥市城市安全风险综合监测预警平台建设 | 国家城市安全风险综合监测 预警工作体系建设试点单位 |
5 | 辽宁省沈阳市 | 沈阳市城市安全风险综合监测预警平台建设 | |
6 | 江苏省南京市 | 国家安全风险监测预警体系建设试点城市—打造“城市之眼”, “智慧”减灾救灾 | |
7 | 广东省深圳市 | 深圳市城市安全风险综合监测预警平台建设 | |
8 | 四川省成都市 | 成都市城市安全风险综合监测预警平台建设—“一图式”智能化应急 | |
9 | 陕西省西安市 | 西安市城市安全风险综合监测预警平台建设 | |
10 | 河南省洛阳市 | 洛阳市城市安全风险综合监测预警平台建设 | |
11 | 湖北省宜昌市 | 宜昌市城市安全风险综合监测预警平台建设 | |
12 | 湖南省常德市 | 常德市城市安全风险综合监测预警平台建设 | |
13 | 广东省佛山市 | 佛山市城市安全风险综合监测预警平台建设—“智慧安全佛山” | |
14 | 广西省南宁市 | 南宁市城市安全风险综合监测预警平台建设 | |
15 | 贵州省遵义市 | 遵义市城市安全风险综合监测预警平台建设 | |
16 | 北京市通州区 | 通州区城市安全风险综合监测预警平台建设 | |
17 | 上海市浦东新区 | 浦东新区城市安全风险综合监测预警平台建设 | |
18 | 重庆市 | 重庆市打造智慧气象多跨融合“样板间” | 中国气象局和商务部作为 数字防汛典型案例 |
19 | 浙江省杭州市 | 城市运行与社会治理“一网统管”平台 | 中国信通院《2023年城市数字化转型 优秀案例》 |
20 | 安徽省淮北市 | 淮北市城市大脑和城市运行“一网通管”项目 | |
21 | 山西省太原市 | 太原市城市内涝安全预警监测系统 | 国际标准《城市治理与服务数字化管理框架与数据》(ISO 37170)应用优秀案例 |
22 | 湖北省武汉市 | 武汉市浪潮智慧水利 | 《中国城市治理数字化转型应用场景建设 蓝皮书(案例库)》2023年 |
23 | 广东省广州市 | 广州市“智慧应急”—“三防一张图” | 地方省会城市 |
24 | 河北省石家庄市 | 石家家市“智慧应急”-应急管理信息化综合应用平台 | |
25 | 吉林省长春市 | 长春市“智慧应急”-应急管理信息化综合应用平台 | |
26 | 黑龙江省哈尔滨市 | 哈尔滨市“智慧应急”-信息化综合应用平台 | |
27 | 福建省福州市 | 福州市“智慧应急”-信息化综合应用平台 | |
28 | 江西省南昌市 | 南昌市“智慧应急”-信息化综合应用平台 | |
29 | 河南省郑州市 | 郑州市“智慧应急”-信息化综合应用平台 | |
30 | 湖南省长沙市 | 长沙市“智慧应急”-信息化综合应用平台 | |
31 | 海南省海口市 | 海口市“智慧应急”-信息化综合应用平台 | |
32 | 云南省昆明市 | 昆明市“智慧应急”-信息化综合应用平台 | |
33 | 贵州省贵阳市 | 贵阳市“智慧应急”-信息化综合应用平台 | |
34 | 甘肃省兰州市 | 兰州市“智慧应急”-信息化综合应用平台 | |
35 | 青海省西宁市 | 西宁市市“智慧应急”-信息化综合应用平台 |
闫绪娴:统筹整体研究思路与文章修改;
王俊丽:承担本研究的数据处理、数智赋能理论框架构建与指标体系构建、结果统计分析、文章撰写与修改;
温 烜:承担本研究统计变量数据的收集与整理;
刘 杨:承担案例文本资料收集和文献整理。
Abdulhamid Najeeb Gambo, Ayoung Daniel Azerikatoa, and Kashefi Armin. 2020. A Survey of Social Media Use in Emergency Situations: A Literature Review. Information Development, 37(2): 389-399.
|
昂昊,吴成颂. 2024. 内生环境如何决定商业银行绿色信贷发展——基于NCA与fsQCA方法. 金融经济学研究,39(2):42-57.
|
Ang Hao and Wu Chengsong. 2024. Determinants of Green Credit Evolution in Commercial Banks: An Examination of the Endogenous Environment through NCA and fsQCA Method. Financial Economic Research, 39(2): 42-57.
|
陈积银,宋春妮,崔怡珂. 2022. 信息救济、情绪安抚与公众参与:社交媒体在非传统安全事件中的社会治理. 全球传媒学刊,9(2):21-36.
|
Chen Jiyin, Song Chun'ni, and Cui Yike. 2022. Information Relief, Emotional Soothing and Public Participation: Research on the Social Governance Model of Social Media in Non-Traditional Security Incidents. Global Journal of Media Studies, 9(2): 21-36.
|
陈曦,白长虹,陈晔,徐进. 2023. 数字治理与高质量旅游目的地服务供给——基于31座中国城市的综合案例研究. 管理世界,39(10):126-150.
|
Chen Xi, Bai Changhong, Chen Ye, and Xu Jin. 2023. Digital Governance and High-Quality Tourism Destination Service Supply: A Comprehensive Case Study Based on 31 Chinese Cities. Management World, 39(10): 126-150.
|
程恋军,王琳茜. 2023. 资源型城市经济高质量发展的制度组态研究——基于NCA和动态QCA的分析. 城市问题,(9):22-33.
|
Cheng Lianjun and Wang Linqian. 2023. Institutional Configurations for High-Quality Economic Development in Resource-Based Cities: An Analysis Based on NCA and Dynamic QCA. Urban Problems, (9): 22-33.
|
Endsley M R. 1988. Situation Awareness Global Assessment Technique (SAGAT). In: IEEE. Proceedings of the IEEE 1988 National Aerospace and Electronics Conference.Piscataway: IEEE, 789-795.
|
Fiss P C. 2007. A Set-Theoretic Approach to Organizational Configurations. Academy of Management Review, 32(4): 1180-1198.
|
巩宜萱,史益豪,刘润泽. 2022. 大安全观:超大型城市应急管理的理论构建——来自深圳的应急管理实践. 公共管理学报,19(3):46-57,168.
|
Gong Yixuan, Shi Yihao, and Liu Runze. 2022. Theoretical Construction of the Emergency Management in the Holistic Security View for Megacities—Based on the Practical Cases of Emergency Management in Shenzhen. Journal of Public Management, 19(3): 46-57, 168.
|
国家减灾委员会. 2022. “十四五”国家综合防灾减灾规划. (2022-06-19)[2025-04-29]. https://www.mem.gov.cn/gk/zfxxgkpt/fdzdgknr/202207/t20220721_418698.shtml.
|
National Disaster Re-duction Committee. 2022. The 14th Five-Year Plan for National Comprehensive Disaster Prevention and Mitigation. (2022-06-19) [2025-04-29]. https://www.mem.gov.cn/gk/zfxxgkpt/fdzdgknr/202207/t20220721_418698.shtml.
|
Han Bingqin, Song Shuang, Liu Diyi, and Mo Jiapei. 2025. Mechanism of Online Public Opinion Formation in Major Risk Events in China: A Qualitative Comparative Analysis. Information Processing and Management, 62(1): 103924.
|
黄华兵,王先伟,柳林. 2021. 城市暴雨内涝综述:特征、机理、数据与方法. 地理科学进展,40(6):1048-1059.
|
Huang Huabing, Wang Xianwei, and Liu Lin. 2021. A Review on Urban Pluvial Floods: Characteristics, Mechanisms, Data, and Research Methods. Progress in Geography, 40(6): 1048-1059.
|
Ke Z. 2024. Study of the Hydrologic and Hydrodynamic Coupling Model (HHDCM) and Application in Urban Extreme Flood Systems. Applied Water Science, 14(4): 1-13.
|
Liang Yongshuai, Liao Weihong, Zhang Zhao, Li Haichen, and Wang Hao. 2024. Using a Multiphysics Coupling-Oriented Flood Modelling Approach to Assess Urban Flooding under Various Regulation Scenarios Combined with Rainstorms and Tidal Effects. Journal of Hydrology, 645(PA): 132189.
|
Liu Wei, Qian Jiayu, and Wu Songjiang. 2024. How to Improve Smart Emergency Preparedness for Natural Disasters? —Evidence from the Experience of Ten Pilot Provinces in China for Smart Emergency. Heliyon, 10(11): e32138.
|
刘慧君,吴鹏. 2023. 健康老龄化服务效能何以提升?——基于NCA与QCA的混合分析. 西安交通大学学报(社会科学版),43(5):48-58.
|
Liu Huajun and Wu Peng. 2023. How Can the Effectiveness of Healthy Aging Services Be Improved?—A Hybrid Analysis Based on NCA and QCA. Journal of Xi'an Jiaotong University(Social Sciences), 43(5): 48-58.
|
刘进进,顾爽. 2024. 城市数字生态变革提升政务服务效能的制度组态研究——基于我国32个重点城市面板数据的动态QCA分析. 城市问题,(7):58-69.
|
Liu Jinjin and Gu Shuang. 2024. Urban Digital Ecosystem Transformation Enhancing Government Service Efficiency: Research on Institutional Configurations Based on Dynamic QCA Analysis of Panel Data from 32 Key Cities in China. Urban Problems, (7): 58-69.
|
刘星. 2022. 预警响应缘何失灵:基于应急管理过程论的一个解释框架——德国洪灾与河南暴雨的启示. 云南民族大学学报(哲学社会科学版),39(6):85-95.
|
Liu Xing. 2022. A Study of the Causes of Failure in Early Warning Responses Based on an Explanatory Framework in the Theoretical Perspective of Emergency Management Process: Enlightenment from the Flood in Germany and the Rainstorm in Henan. Journal of Yunnan Minzu University(Philosophy and Social Sciences Edition), 39(6): 85-95.
|
He Nianchu, Jia Junwei, Xu Jiangbo and Wen Subin. 2024. Big Data Analysis of Policy Coordination Paths Based on Latent Dirichlet Allocation Model and Fuzzy-Set Qualitative Comparative Analysis Method. China Communications, 21(12): 309-325.
|
闪淳昌,周玲,秦绪坤,沈华,宿洁. 2020. 我国应急管理体系的现状、问题及解决路径. 公共管理评论,2(2):5-20.
|
Shan Chunchang, Zhou Ling, Qin Xukun, Shen Hua, and Su Jie. 2020. The Current Status, Challenges, and Solutions of China's National Emergency Management System. China Public Administration Review, 2(2): 5-20.
|
申霞. 2024. 基于fsQCA的灾害事故跨域协同治理共同体研究. 中国安全科学学报,34(10):205-213.
|
Shen Xia. 2024. Study on Cross-Domain Collaborative Governance Community for Disaster Accidents Based on fsQCA. China Safety Science Journal, 34(10): 205-213.
|
史培军. 2005. 四论灾害系统研究的理论与实践. 自然灾害学报,(6):1-7.
|
Shi Peijun. 2005. Fourth Treatise on the Theory and Practice of Disaster System Research. Journal of Natural Disasters, (6): 1-7.
|
Wu Meimei, Wu Zening, Ge Wei, Wang Huiliang, Shen Yanxia, and Jiang Mengmeng. 2021. Identification of Sensitivity Indicators of Urban Rainstorm Flood Disasters: A Case Study in China. Journal of Hydrology, 513(7): 781-791.
|
王秉,周佳胜,史志勇. 2024. 数智赋能安全态势感知与塑造模型. 图书馆论坛,44(8):1-7.
|
Wang Bing,Zhou Jiasheng, and Shi Zhiyong. 2024. Digital Intelligence-Driven Security Situation Awareness and Model Construction. Library Tribune, 44(8): 1-7.
|
王博,刘盛博,丁堃,刘则渊. 2015. 基于LDA主题模型的专利内容分析方法. 科研管理,36(3):111-117.
|
Wang Bo, Liu Shengbo, Ding Kun, and Liu Zeyuan. 2015. Patent Content Analysis Method Based on LDA Topic Model. Science Research Management, 36(3): 111-117.
|
王威. 2023a. 基于三元空间反馈控制结构的新型智慧城市评价模型及评价标准研究. 系统科学学报,31(3):58-64.
|
Wang Wei. 2023a. Evaluation Model and Evaluation Standard of New-Type Smart City Based on Ternary Space Feedback Control Structure. Chinese Journal of Systems Science, 31(3): 58-64.
|
王威,于新月,杨佩,马东辉. 2023b. 京津冀城市群防灾韧性时空格局和空间收敛性研究. 灾害学,38(4):1-6.
|
Wang Wei, Yu Xinyue, Yang Pei, and Ma Donghui. 2023b. Spatial and Temporal Patterns of Disaster Resilience and Spatial Convergence in the Beijing-Tianjin-Hebei City Cluster. Journal of Catastrophology, 38(4): 1-6.
|
王永明,郑姗姗. 2023. 地方政府应急管理效能提升的多重困境与优化路径——基于“河南郑州‘7·20’特大暴雨灾害”的案例分析. 管理世界,39(3):83-96.
|
Wang Yongming and Zheng Shanshan. 2023. Multiple Dilemmas and Optimization Path for Improving the Efficiency of Local Government Emergency Management: Case Analysis Based on Henan Zhengzhou Torrential Rain-Caused Disaster on July 20. Journal of Management World, 39(3): 83-96.
|
王振耀,田小红. 2006. 中国自然灾害应急救助管理的基本体系. 经济社会体制比较,(5):28-34.
|
Wang Zhenyao and Tian Xiaohong. 2006. Basic System of Emergency Relief Management for Natural Disasters in China. Comparative Economic & Social Systems, (5): 28-34.
|
吴国凤,刘青,许瀚卿,魏旭辰,王军. 2024. 海平面上升情景下沿海城市极端雨潮复合洪涝危险性评估——以海口市为例. 热带地理,44(6):1025-1035.
|
Wu Guofeng, Liu Qing, Xu Hanqing, Wei Xuchen, and Wang Jun. 2024. Risk Assessment of Extreme Rainfall and Storm Surge Compound Flooding in Coastal Cities under Sea Level Rise Scenarios: A Case Study of Haikou City. Tropical Geography, 44(6): 1025-1035.
|
吴俊杰,段晶晶,辛欣,周炳君,王健捷. 2023. 台风“黑格比”造成浙东北滞后型暴雨成因分析及多模式预报检验. 热带气象学报,39(6):857-871.
|
Wu Junjie, Duan Jingjing, Xin Xin, Zhou Bingjun, and Wang Jianjie. 2023. Cause Analysis And Multi-Model Forecast Verification Of Retarded Rainstorm Related With Typhoon Hagupit In Northeastern ZheJiang Province. Journal of Tropical Meteorology, 39(6): 857-871.
|
谢雪苗,邵亦文. 2024. 社交媒体数据分析在台风灾害管理中的应用潜力探究——以台风“杜苏芮”对福建省的影响为例. 热带地理,44(6):1090-1101.
|
Xie Xuemiao and Shao Yiwen. 2024. Application Potential of Social Media Data Analytics in Typhoon Disaster Management: Taking the Impact of Typhoon Doksuri on Fujian Province as an Example. Tropical Geography, 44(6): 1090-1101.
|
Yasumitsu Mawjima, Takemasa Miyoshi, Masaru Kunii, Hiromu Seko and Kae Sato. 2019. Impact of Dense and Frequent Surface Observations on 1-Minute-Update Severe Rainstorm Prediction: A Simulation Study. Journal of the Meteorological Society of Japan, 97(1): 253-273.
|
闫绪娴,王俊丽,孔锋,米俊,刘杨. 2024. 城市暴雨内涝灾害的链式成灾路径分析——基于DEMATEL-AISM-MICMAC模型. 灾害学,39(4):1-7.
|
Yan Xuxian, Wang Junli, Kong Feng, Mi Jun, and Liu Yang. 2024. Analysis of Chain Disaster Path of Urban Rainstorm Waterlogging Disaster—Based on the DEMATEL-AISM-MICMAC Model. Journal of Catastrophology, 39(4): 1-7.
|
杨辰,潘顺,严岩. 2021. 基于自然语言识别的上海市报警灾情数据识别及其气象灾害特征分析研究. 自然灾害学报,30(3):142-150.
|
Yang Chen, Pan Shun, and Yan Yan. 2021. Research on Recognition of Alarm Disaster Data and Analysis of Meteorological Disaster Features in Shanghai Based on Natural Language Recognition Algorithm. Journal of Natural Disasters, 30(3): 142-150.
|
喻修远,张胜. 2024. 结构、过程和功能:城市特大暴雨灾害应对的组织协同优化策略. 中国行政管理,40(2):144-153.
|
Yu Xiuyuan and Zhang Sheng. 2024. Structure Process and Function Organizational Coordination Optimization Strategies for Urban Extreme Rainstorm Disaster Response. Chinese Public Administration, 40(2): 144-153.
|
Zou Yalin, Huang Yi, Wang Yifan, Zhou Fangrong, Xia Yongqi, and Shen Zhenhong. 2024. The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes. Water, 16(7): 1-23.
|
张金良,罗秋实,王冰洁,李荣容,盖永岗,陈翠霞. 2024. 城市极端暴雨洪涝灾害成因及对策研究进展. 水资源保护,40(1):6-15.
|
Zhang Jinliang, Luo Qiushi, Wang Bingjie, Li Rongrong, Ge Yonggang, and Chen Cuixia. 2024. Research Progress on Causes and Countermeasures of Urban Extreme Rainstorm Flood Disasters. Water Resources Protection, 40(1): 6-15.
|
张林刚,戴国庆,熊焰,耿文月. 2022. 中国制造业数字化转型评价及影响因素——基于模糊集定性比较分析. 科技管理研究,42(7):68-78.
|
Zhang Lingang, Dai Guoqing, Xiong Yan, and Geng Wenyue. 2022. Evaluation and Influencing Factors of Digital Transformation of the Manufacturing Industry in China: Based on Qualitative Comparative Analysis of Fuzzy Set. Science and Technology Management Research, 42(7): 68-78.
|
赵云辉,梁宇奇,冯泰文,杜运周. 2025. 营商环境生态如何驱动城市经济韧性提升?——基于复杂系统观的组态分析. 管理评论,37(2):57-71.
|
Zhao Yunhui, Liang Yuqi, Feng Taiwen, and Du Yunzhou. 2025. How Does Business Ecosystem Drive Urban Economic Resilience: A Configuration Analysis Based on Complex Systems View. Management Review, 37(2): 57-71.
|
中华人民共和国国务院. 2021. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要. (2021-03-12)[2025-04-29]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
|
The State Council of the People's Republic of China. 2021. The Fourteenth Five-Year Plan.(2021-03-12) [2025-04-29]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
|
中国气象局. 2021. 全国气象发展“十四五”规划. (2021-11-29)[2025-06-09]. https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202112/t20211224_4325497.html.
|
China Meteorological Administration. 2021. The 14th Five-Year Plan for National Meteorological Development. (2021-11-29) [2025-06-09]. https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202112/t20211224_4325497.html.
|
/
〈 |
|
〉 |