“制度设计―执行过程―质量效果”多环节的拆旧复垦碳储量评估
邓平平:负责方法设计与实证路径制定,统筹实地调查与数据整理,承担软件分析与图表绘制,撰写论文核心内容;
叶昌东:负责研究构想与方案设计,组织与统筹研究工作;
柯春鹏:参与方法制定,负责数据分析与结果验证,指导论文写作;
胡明月:参与论文校对和研究监督工作;
付小平:负责数据收集整理与研究过程监督;
周 龙:参与数据整理与研究监督工作。
邓平平(1998—),女,广东韶关人,硕士研究生,研究方向为乡村振兴、土地整治等,(E-mail)dpp2024@icloud.com; |
收稿日期: 2024-06-08
修回日期: 2024-09-11
网络出版日期: 2025-07-14
基金资助
广东省自然科学基金项目(2023A1515012861)
Multi-Stage Evaluation of Demolition and Reclamation Carbon Storage from "System Design-Construction-Quality Effect" Perspectives
Received date: 2024-06-08
Revised date: 2024-09-11
Online published: 2025-07-14
为使农村建设用地再利用政策内容的调整更契合碳中和目标,提高政策执行以及后期管护工作的碳储量实现效果,文章以广东省拆旧复垦为例,构建了“制度设计—执行过程—质量效果”3个环节的系统评价框架,用于量化各环节前后碳储量变化并分析影响碳储量的因素。结果表明:1)地块复垦后产生了良好的碳储量,尤其位于省域交界县区的地块,亩均碳储量增加近5倍,全省平均碳储量贡献度为0.16%,单县区最高达5.25%;2)制度设计上,碳储量实现比值为5.81%,差额高达36 272 530.12 t,有较大的提升空间;3)执行过程中,碳储量实现比值为24.71%,单县区最高为97.55%,最低为1.26%;4)质量效果上,碳储量实现比值为65.03%,呈现“东高西低”特征,东部较多县区对复垦后地块采取专业的管护措施。基于碳储量增益的显著区域差异及专业管护的有效性,文章建议制定差异化实施细则并强化后期管护,以最大化政策对碳中和目标的贡献。
邓平平 , 叶昌东 , 柯春鹏 , 胡月明 , 付小平 , 周龙 . “制度设计―执行过程―质量效果”多环节的拆旧复垦碳储量评估[J]. 热带地理, 2025 , 45(7) : 1284 -1299 . DOI: 10.13284/j.cnki.rddl.20240369
Optimizing land-use policies to enhance carbon storage has become a strategic priority in reaching the dual carbon goals in China. Among these policies, the Demolition and Reclamation (D&R) initiative for rural construction land provides a substantial opportunity to increase carbon sequestration through ecological restoration. Guangdong Province was selected as a representative case study for developing a comprehensive multi-stage evaluation framework for carbon storage, structured across three sequential stages: System Design (SD), Construction (CO), and Quality Effect (QE). The primary objectives were to quantify the differences in carbon storage capacity before and after reclamation and to analyze the key influencing factors at each stage to increase policy effectiveness in supporting the carbon neutrality goal. A stage-wise quantitative model was constructed to evaluate the carbon storage changes associated with reclaiming rural land. Data were collected from multiple counties using satellite imagery, soil surveys, vegetation coverage assessments, and policy implementation records. The carbon storage levels were calculated using established biomass and soil carbon estimation methods. Performance metrics such as carbon realization ratios and contribution rates were used to determine the effectiveness of the implementation of the policy in different stages and regions. The results showed the following: (1) The carbon storage markedly increased after reclamation, especially in counties located at provincial boundaries, with a nearly nearly five-fold increase in the per mu carbon storage. The average province-wide carbon storage contribution rate was 0.16%, with the highest single-county contribution reaching 5.25% (Maonan). (2) The carbon storage realization ratio was 5.81% in the SD stage, indicating a considerable potential gap of approximately 36.27 million tons in unrealized carbon storage. (3) The realization ratio was higher at 24.71% in the CO phase but with wide variation among counties, ranging from 1.26% to 97.55% (Jinping and Yingde, respectively). (4) The realization ratio was 65.03% in the QE stage, being spatially higher in the east and lower in the west. The carbon performance was stronger in the eastern counties, which was largely attributed to the adoption of professional land management and post-reclamation care practices. This study contributes to the literature by offering a multi-stage evaluation framework that links the SD, CO, and QE stages to measurable carbon storage performance. The results of the analysis revealed that the D&R policy has the potential for enhancing carbon sequestration; however, each stage has experienced specific institutional and operational challenges. The carbon realization ratio was low in the SD stage, reflecting an insufficient alignment between the top-down policy and the carbon neutrality goal. This finding could be attributed to the lack of effective bottom-up feedback mechanisms, low public acceptance, and limited access to localized, reliable data, which were factors that strictly constrained the operational relevance of carbon-related policy objectives. The wide disparities in the carbon storage realization in the CO stage across counties were primarily due to differences in organizational capacity. High-performing counties typically had clear task assignments, defined project timelines, integrated project management, and strong inter-program coordination. In contrast, low-performing counties tended to adopt vague and informal approaches, such as verbal agreements, which hindered implementation consistency and effectiveness. The carbon realization was highest in the QE stage among the three stages; however, room for optimization remains. Counties with superior performance often established designated maintenance personnel and enforced regular management practices. Issues such as weed overgrowth, stagnant water, and restricted tree growth emerged in areas where post-reclamation maintenance was absent, which directly inhibited carbon accumulation. Several policy implications are proposed based on these findings to enhance the effectiveness of the D&R policy in achieving carbon neutrality. First, county-specific implementation guidelines should be developed to bridge fiscal and technical disparities, especially in underdeveloped regions, such as western Guangdong, to increase the regional adaptability of policy instruments. Second, professional post-reclamation stewardship must be institutionalized through long-term ecological management funds to ensure continuous carbon sequestration and ecological stability. Third, an integrated SD-CO-QE approach should be prioritized in high-carbon-potential areas and supported by remote-sensing-based dynamic monitoring to enable timely feedback, adaptive management, and precise interventions. These strategies collectively offer a coherent and targeted policy pathway for maximizing the carbon storage potential of D&R and reinforcing their strategic role in achieving the carbon neutrality agenda in China.
表1 拆旧复垦各土地利用类型碳密度 (t/hm2)Table 1 Carbon density of demolition and reclamation of all land use type |
土地类型 | 碳密度 | 珠三角片区 | 粤西片区 | 粤东片区 | 粤北片区 |
---|---|---|---|---|---|
园 地 | 植物碳密度 | 0.57 | 6.01 | 1.40 | 1.21 |
土壤碳密度 | 2.97 | 5.34 | 4.64 | 5.37 | |
总碳密度 | 3.54 | 11.35 | 6.04 | 6.58 | |
林 地 | 植物碳密度 | 3.98 | 3.98 | 3.98 | 3.98 |
土壤碳密度 | 3.33 | 5.09 | 4.64 | 5.52 | |
总碳密度 | 7.31 | 9.07 | 8.62 | 9.50 | |
草 地 | 植物碳密度 | 0.51 | 0.51 | 0.51 | 0.51 |
土壤碳密度 | 4.70 | 5.34 | 4.70 | 6.90 | |
总碳密度 | 5.21 | 5.85 | 5.21 | 7.41 |
表2 复垦为园地抽样地块的地上碳密度Table 2 Above carbon density table of reclamation of grass land |
区域 | 抽样区 | 抽样植物 | 抽样面积/hm2 | 生物量/ (t·hm-2) | 碳系数/ (g·kg-1) | 植物碳密度/(t·hm-2) |
---|---|---|---|---|---|---|
珠三角 片区 | 高明区 | 黄花风铃木 | 1.005 2 | 2.17 | 522.19 | 1.13 |
博罗县 | 无核黄心鸡皮 | 0.879 1 | 0.99 | 520.67 | 0.51 | |
惠东县 | 番石榴 | 0.103 4 | 0.11 | 522.19 | 0.06 | |
粤西 片区 | 电白区 | 香蕉树 | 0.972 5 | 16.17 | 520.67 | 8.42 |
阳东区 | 龙眼树 | 2.449 9 | 12.14 | 522.19 | 6.34 | |
阳西县 | 荔枝树 | 2.167 1 | 6.23 | 522.19 | 3.25 | |
粤东 片区 | 龙湖区 | 细叶紫薇 | 1.329 3 | 0.98 | 520.67 | 0.51 |
澄海区 | 小叶紫薇 | 2.474 6 | 3.86 | 520.67 | 2.01 | |
陆河县 | 柚子树 | 2.620 6 | 3.19 | 522.19 | 1.67 | |
粤北 片区 | 翁源县 | 紫薇树 | 4.784 4 | 0.66 | 520.67 | 0.34 |
乐昌市 | 枇杷树 | 1.097 9 | 4.36 | 522.19 | 2.28 | |
阳山县 | 山茶 | 0.495 6 | 1.89 | 520.67 | 1.01 |
表3 拆旧复垦各类型用地碳储量(CS)及贡献度(CSC)Table 3 Carbon Storage(CS)and Carbon Storage Contribution(CSC)of demolition and reclamation of each land use type |
区域 | 园地 | 林地 | 草地 | 合计 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CS/t | CSC/% | CS/t | CSC/% | CS/t | CSC/% | CS/t | CSC/% | ||||
全省 | 157 763.65 | 0.07 | 192 371.46 | 0.09 | 9 153.09 | 0.00 | 359 288.20 | 0.16 | |||
珠三角片区 | 14 732.91 | 0.02 | 22 663.86 | 0.02 | 732.71 | 0.00 | 38 129.49 | 0.05 | |||
粤西片区 | 53 511.23 | 0.13 | 76 247.41 | 0.16 | 3 036.03 | 0.01 | 132 794.67 | 0.29 | |||
粤东片区 | 29 734.65 | 0.05 | 35 816.73 | 0.05 | 2 344.67 | 0.00 | 67 896.05 | 0.10 | |||
粤北片区 | 59 784.86 | 0.11 | 57 643.46 | 0.14 | 3 039.68 | 0.00 | 120 468.00 | 0.25 |
表4 拆旧复垦各环节各类型用地碳储量的差额和比值Table 4 Carbon storage attainment margin and attainment rate for each land use type in each link of demolition and reclamation |
环节 | 区域 | 园地 | 林地 | 草地 | 合计 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
差额/t | 比值/% | 差额/t | 比值/% | 差额/t | 比值/% | 差额/t | 比值/% | 差额/t | 比值/% | ||||
质量 效果 | 珠三角片区 | 5 514.77 | 72.76 | 8 432.95 | 72.88 | 252.86 | 74.34 | 14 200.58 | 72.86 | 193 238.52 | 65.03 | ||
粤西片区 | 27 482.09 | 66.07 | 33 781.72 | 69.30 | 1 382.45 | 68.71 | 62 646.26 | 67.95 | |||||
粤东片区 | 13 935.51 | 68.09 | 13 337.69 | 72.87 | 954.79 | 71.06 | 28 227.99 | 70.63 | |||||
粤北片区 | 44 801.45 | 57.16 | 41 587.74 | 58.09 | 1 774.50 | 63.14 | 88 163.69 | 57.74 | |||||
执行 过程 | 珠三角片区 | 50 343.42 | 28.68 | 115 706.85 | 21.18 | 2 659.40 | 27.04 | 168 578.70 | 23.67 | 1 683 701.03 | 24.71 | ||
粤西片区 | 251 465.71 | 24.36 | 405 502.65 | 21.34 | 18 101.56 | 19.62 | 671 704.08 | 22.54 | |||||
粤东片区 | 60 951.32 | 41.74 | 57 932.24 | 45.90 | 4 273.69 | 43.57 | 123 157.24 | 43.84 | |||||
粤北片区 | 388 298.33 | 21.22 | 315 225.57 | 23.94 | 16 737.11 | 22.34 | 720 261.01 | 22.46 | |||||
制度 设计 | 珠三角片区 | 2 828 048.49 | 1.75 | 4 086 103.97 | 2.75 | 101 460.31 | 2.55 | 6 973 029.94 | 3.07 | 36 272 530.12 | 5.81 | ||
粤西片区 | 8 790 575.43 | 2.78 | 6 350 408.06 | 6.00 | 240 499.49 | 7.00 | 15 189 407.90 | 5.40 | |||||
粤东片区 | 2 623 701.92 | 2.27 | 3 948 488.20 | 1.45 | 337 921.47 | 1.25 | 6 813 987.55 | 3.12 | |||||
粤北片区 | 3 877 885.96 | 9.10 | 3 264 840.85 | 8.81 | 341 972.98 | 4.67 | 7 296 104.73 | 11.29 |
图4 拆旧复垦各环节碳储量实现差额分布Fig.4 Carbon storage attainment margin in each link of demolition and reclamation |
附表1 广东省各片区各地类碳密度Appendix table 1 Carbon density of various types of land in various regions of Guangdong Province |
区域 | 土地利用类型 | 植物碳密度/(t·hm-2) | 土壤碳密度/(t·hm-2) | 文献来源 |
---|---|---|---|---|
珠三角片区 | 园地 | — | 2.97 | 周毅等(2009) |
林地 | 3.98 | 3.33 | 揣小伟等(2011);朱鑫(2014) | |
草地 | 0.51 | 4.7 | 李克让等(2003);奚小环等(2013) | |
水域 | 0 | 3.71 | 奚小环等(2013);周毅等(2009) | |
农田 | 0.51 | 3.73 | 奚小环等(2013);朱鑫(2014) | |
粤西片区 | 园地 | — | 5.34 | 贾黎黎等(2019) |
林地 | 3.98 | 5.09 | 揣小伟等(2011);贾黎黎等(2019) | |
草地 | 0.51 | 5.34 | 李克让等(2003);贾黎黎等(2019) | |
水域 | 0 | 3.71 | 周毅等(2009);奚小环等(2013) | |
农田 | 0.51 | 3.78 | 奚小环等(2013);贾黎黎等(2019) | |
粤东片区 | 园地 | — | 4.64 | 周毅等(2009) |
林地 | 3.98 | 4.64 | 揣小伟等(2011) | |
草地 | 0.51 | 4.7 | 李克让等(2003);奚小环等(2013) | |
水域 | 0 | 3.71 | 周毅等(2009);奚小环等(2013) | |
农田 | 0.51 | 3.78 | 奚小环等(2013) | |
粤北片区 | 园地 | — | 5.37 | 李婷婷等(2021) |
林地 | 3.98 | 5.52 | 揣小伟等(2011);李婷婷等(2021) | |
草地 | 0.51 | 6.9 | 李克让等(2003);李婷婷等(2021) | |
水域 | 0 | 3.71 | 周毅等(2009);奚小环等(2013) | |
农田 | 0.51 | 5.36 | 奚小环等(2013);李婷婷等(2021) |
|
附表2 广东省各县区拆旧复垦实际实现量和碳储量贡献度Appendix table 2 Actual amount of Demolition and Reclamation and carbon storage contribution in counties of Guangdong Province |
市区 | 县区 | 实际实现量/t | 碳储量贡献度/% | 市区 | 县区 | 实际实现量/t | 碳储量贡献度/% |
---|---|---|---|---|---|---|---|
广州市 | 增城区 | 0 | 0 | 汕头市 | 龙湖区 | 0 | 0 |
佛山市 | 高明区 | 1 291.09 | 4.53 | 金平区 | 0 | 0 | |
江门市 | 新会区 | 5 154.84 | 20.67 | 濠江区 | 0 | 0 | |
台山市 | 2 309.03 | 3.05 | 潮阳区 | 29.39 | 0.28 | ||
开平市 | 5 502.89 | 14.16 | 潮南区 | 31.17 | 0.31 | ||
鹤山市 | 3 670.82 | 12.57 | 澄海区 | 151.53 | 256.39 | ||
恩平市 | 5 716.87 | 10.81 | 南澳县 | 0 | 0 | ||
惠州市 | 惠阳区 | 0 | 0 | 梅州市 | 梅江区 | 580.45 | 3.7 |
博罗县 | 1 306.68 | 1.64 | 梅县区 | 6 643.43 | 11.06 | ||
惠东县 | 6 335.54 | 5.39 | 大埔县 | 6 278.39 | 11.79 | ||
龙门县 | 6 841.72 | 7.46 | 丰顺县 | 9 023.02 | 16.33 | ||
韶关市 | 武江区 | 1 422.61 | 9.74 | 五华县 | 11 980.56 | 14.93 | |
浈江区 | 872.5 | 10.44 | 平远县 | 11 527.53 | 27.79 | ||
曲江区 | 122.81 | 0.28 | 蕉岭县 | 3 484.16 | 13.71 | ||
始兴县 | 3 204.4 | 5.45 | 兴宁市 | 9 220.22 | 19.27 | ||
仁化县 | 1 657.22 | 2.4 | 汕尾市 | 海丰县 | 940.29 | 7.13 | |
翁源县 | 1 425.68 | 2.52 | 陆河县 | 1 388.75 | 5.76 | ||
乳源瑶族自治县 | 1 096.93 | 1.96 | 陆丰市 | 0 | 0 | ||
新丰县 | 132.08 | 0.19 | 潮州市 | 湘桥区 | 0 | 0 | |
乐昌市 | 4 278.32 | 8.29 | 潮安区 | 525.23 | 3.86 | ||
南雄市 | 2 986.66 | 6.8 | 饶平县 | 307.39 | 1.69 | ||
肇庆市 | 鼎湖区 | 4 557.51 | 35.23 | 揭阳市 | 榕城区 | 0 | 0 |
高要区 | 22 706.57 | 41.27 | 揭东区 | 817.08 | 11.46 | ||
广宁县 | 5 886.52 | 6.93 | 揭西县 | 1 767.97 | 6.32 | ||
怀集县 | 6 861.85 | 6.73 | 惠来县 | 605.72 | 8.05 | ||
封开县 | 2 311.5 | 2.91 | 普宁市 | 2 593.78 | 11.56 | ||
德庆县 | 11 953 | 20.77 | 湛江市 | 麻章区 | 0 | 0 | |
四会市 | 9 933.35 | 43.63 | 遂溪县 | 6 528.73 | 24.54 | ||
河源市 | 紫金县 | 916.95 | 0.88 | 徐闻县 | 2 476.29 | 5.66 | |
龙川县 | 7 427.91 | 8.21 | 廉江市 | 10 194.51 | 56.37 | ||
连平县 | 2 602.87 | 4.08 | 雷州市 | 6 376.62 | 5.98 | ||
和平县 | 3 233.73 | 4.27 | 茂名市 | 茂南区 | 1 006.47 | 551.75 | |
东源县 | 1 486.29 | 1.34 | 电白区 | 16 820.28 | 89.84 | ||
清远市 | 清城区 | 82.31 | 0.51 | 高州市 | 5 533.35 | 10.09 | |
清新区 | 974.85 | 1.73 | 化州市 | 16 679.98 | 53.45 | ||
佛冈县 | 1 794.91 | 5.13 | 信宜市 | 7 175.85 | 14.41 | ||
阳山县 | 3 826.43 | 9.15 | 阳江市 | 江城区 | 0 | 0 | |
连山壮族瑶族自治县 | 3 770.78 | 8.95 | 阳东区 | 2 523.25 | 10.77 | ||
连南瑶族自治县 | 682.41 | 1.86 | 阳西县 | 3 945.07 | 23.97 | ||
英德市 | 962.76 | 1 | 阳春市 | 5 990.12 | 7.36 | ||
连州市 | 11 296.28 | 21.81 | 云浮市 | 云城区 | 1 659.91 | 8.68 | |
云安区 | 4 555.17 | 17.56 | |||||
新兴县 | 11 692.07 | 34.39 | |||||
郁南县 | 9 019.24 | 23.4 | |||||
罗定市 | 20 617.75 | 66.93 |
1 植物蓄积量指场地中所有树木单位面积的材积总和。
2 合格率指该县区合格地块面积与已验收总面积的比值。
3 盖度指该拆旧复垦地块内植物地上部分的垂直投影占地面的百分比。
4 https://www.resdc.cn
5 https://www.resdc.cn/DOI/doi.aspx?DOIid=54
6 亩折合0.066 7 hm2。
Ali D A and Deininger K. 2022. Institutional Determinants of Large Land-Based Investments' Performance in Zambia: Does Title Enhance Productivity and Structural Transformation? World Development, 157: 105932.
|
Ariti A T, van Vliet J, and Verburg P H. 2018. Farmers' Participation in the Development of Land Use Policies for the Central Rift Valley of Ethiopia. Land Use Policy, 71: 129-137.
|
Ariti A T, van Vliet J, and Verburg P H. 2019. The Role of Institutional Actors and Their Interactions in the Land Use Policy Making Process in Ethiopia. Journal of Environmental Management, 237: 235-246.
|
Berta Aneseyee A, Noszczyk T, Soromessa T, and Elias E. 2020. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sensing, 12(7): 1103.
|
Cao J J, Zhang X F, Deo R, Gong Y F, and Feng Q. 2018. Influence of Stand Type and Stand Age on Soil Carbon Storage in China's Arid and Semi-Arid Regions. Land Use Policy, 78: 258-265.
|
Cao J J, Wei C, Adamowski J F, Zhou J J, Liu C F, Zhu G F, Dong X G, Zhang X F, Zhao H J, and Feng Q. 2020. Could Arid and Semi-Arid Abandoned Lands Prove Ecologically or Economically Valuable If They Afford Greater Soil Organic Carbon Storage than Afforested Lands in China's Loess Plateau? Land Use Policy, 99: 105027.
|
常铭鑫,曾晨,解鹏,刘述密. 2023. 多情景下的土地利用模拟与特征分析:以武汉市为例. 华中农业大学学报,42(4):74-85.
Chang Mingxin, Zeng Chen, Xie Peng, and Liu Shumi. 2023. Land Use Simulation and Characteristic Analysis in Multiple Scenarios: A Case Study in Wuhan. Journal of Huazhong Agricultural University, 42(4): 74-85.
|
Chavunduka C, Dipura R, and Vudzijena V. 2021. Land, Investment and Production in Agrarian Transformation in Zimbabwe. Land Use Policy, 105: 105371.
|
陈浮,濮励杰,曹慧,彭补拙,杨桂山,周生路. 2002. 近20年太湖流域典型区土壤养分时空变化及驱动机理. 土壤学报,39(2):236-245.
Chen Fu, Pu Lijie, Cao Hui, Peng Buzhuo, Yang Guishan, and Zhou Shenglu. 2002. Spatial and Temporal Changes of Soil Nutrients and Their Mechanism in Typical Area of Taihu Lake Valley during the Past Two Decades. Acta Pedologica Sinica, 39(2): 236-245.
|
陈浮,李肖肖,马静,于昊辰,杨永均,王艺霏. 2021. 旱改水型农田整治对土壤碳排放的短期影响. 生态学报,41(19):7725-7734.
Chen Fu, Li Xiaoxiao, Ma Jing, Yu Haochen, Yang Yongjun, and Wang Yifei. 2021. Short-Term Effects of Land Consolidation of Dryland-to-Paddy Conversion on Soil Carbon Flux. Acta Ecologica Sinica, 41(19): 7725-7734.
|
陈振,郭杰,欧名豪,张雪微,何鸿飞. 2024. “粮食-生态”双安全约束下建设用地供需多情景模拟——以江苏省南京市为例. 中国土地科学,38(2):61-72.
Chen Zhen, Guo Jie, Ou Minghao, Zhang Xuewei, and He Hongfei. 2024. Multi-Scenario Simulation of Construction Land Supply and Demand under the Dual Constraints of Food and Ecology Security: A Case Study of Nanjing City in Jiangsu Province. China Land Science, 38(2): 61-72.
|
揣小伟,黄贤金,赖力,张梅. 2011. 基于GIS的土壤有机碳储量核算及其对土地利用变化的响应. 农业工程学报,27(9):1-6.
Chuai Xiaowei, Huang Xianjin, Lai Li, and Zhang Mei. 2011. Accounting of Surface Soil Carbon Storage and Response to Land Use Change Based on GIS. Transactions of the Chinese Society of Agricultural Engineering, 27(9): 1-6.
|
Ding Z W, Li R N, O'Connor P, Zheng H, Huang B B, Kong L Q, Xiao Y, Xu W H, and Ouyang Z Y. 2021. An Improved Quality Assessment Framework to Better Inform Large-Scale Forest Restoration Management. Ecological Indicators, 123: 107370.
|
段璇瑜,龚文峰,孙雨欣,刘铁冬,邱新彩,张阳阳. 2022. 海南岛海岸带土地利用变化情景碳储量时空演变及评估预测. 水土保持通报,42(5):301-311.
Duan Xuanyu, Gong Wenfeng, Sun Yuxin, Liu Tiedong, Qiu Xincai, and Zhang Yangyang. 2022. Land Use Change and Its Impact on Temporal and Spatial Evolution of Carbon Storage in Coastal Zone of Hainan Island. Bulletin of Soil and Water Conservation, 42(5): 301-311.
|
Eldeep A M, Farag M A, and Abd El-hafez L M. 2022. Using BIM as a Lean Management Tool in Construction Processes—A Case Study. Ain Shams Engineering Journal, 13(2): 101556.
|
费罗成,吴次芳,程久苗. 2017. 农村土地整治的碳效应及其政策响应. 资源科学,39(11):2073-2082.
Fei Luocheng, Wu Cifang, and Cheng Jiumiao. 2017. Carbon Effect of Rural Land Consolidation and Its Policy Response. Resources Science, 39(11): 2073-2082.
|
广东省统计局. 2021. 2021广东农村统计年鉴. (2021-12-20)[2022-05-15]. http://stats.gd.gov.cn/gdnctjnj/content/post_3729628.html.
Guangdong Provincial Bureau of Statistics. 2021. Guangdong Rural Statistical Yearbook 2021. (2021-12-20) [2022-05-15]. http://stats.gd.gov.cn/gdnctjnj/content/post_3729628.html.
|
广东省人民政府. 2008.广东省实施《中华人民共和国土地管理法》办法. (2021-12-30)[2022-05-15]. https://sfj.gz.gov.cn/gzzffzxx/xzfygz400000003/fgzc/content/post_7991281.html.
Guangdong Provincial People's Government. 2008. Guangdong Province's Implementation Measures for the Land Administration Law of the People's Republic of China. (2021-12-30) [2022-05-15]. https://sfj.gz.gov.cn/gzzffzxx/xzfygz400000003/fgzc/content/post_7991281.html.
|
广东省自然资源厅. 2019. 广东省农村建设用地拆旧复垦验收指南. 广州:广东省自然资源厅办公室.
Guangdong Provincial Department of Natural Resources. 2019. "Guangdong Provincial Rural Construction Land Demolition and Reclamation Acceptance Guidelines". Guangzhou: Office of Guangdong Provincial Department of Natural Resources.
|
郭晓敏,揣小伟,张梅,梁华石,李建豹,左天惠. 2019. 扬子江城市群土地利用时空变化及其对陆地生态系统碳储量的影响. 长江流域资源与环境,28(2):269-280.
Guo Xiaomin, Chuai Xiaowei, Zhang Mei, Liang Huashi, Li Jianbao, and Zuo Tianhui. 2019. Spatio-Temporal Analysis of Land-Use Change and the Impact on Terrestrial Ecosystems Carbon Storage in Yangtze River City Group. Resources and Environment in the Yangtze Basin, 28(2): 269-280.
|
Hamza M and Diaconeasa M A. 2022. A Framework to Implement Human Reliability Analysis during Early Design Stages of Advanced Reactors. Progress in Nuclear Energy, 146: 104171.
|
韩依纹,万明暄,方铁树,万敏. 2024. 生态底线约束下的国土生态空间碳储量预测:以襄阳市为例. 华中农业大学学报,43(3):89-99.
Han Yiwen, Wan Mingxuan, Fang Tieshu, and Wan Min. 2024. Predicting Carbon Storage of Ecological Space under Constraints of the Ecological Bottom Line: Taking Xiangyang City as an Example. Journal of Huazhong Agricultural University, 43(3): 89-99.
|
胡华科,刘莎,曹俊琴,梁高都,阮文熙,张鹏飞. 2019. 农村建设用地拆旧复垦潜力、问题与对策研究——以广东省梅州市为例. 伊犁师范学院学报(自然科学版),13(3):52-56.
Hu Huake, Liu Sha, Cao Junqin, Liang Gaodou, Ruan Wenxi, and Zhang Pengfei. 2019. Study on the Theoretical Potentialotential, Problems and Countermeasures of Demolition andReclamation of Rural Construction Land in Meizhou. Journal of Yili Normal University (Natural Science Edition), 13(3): 52-56.
|
贾黎黎,朱鑫,赵艺,李婷婷. 2019. 雷州半岛土壤碳储量及其有机碳时空变化规律. 华南地质与矿产,35(3):373-379.
Jia Lili, Zhu Xin, Zhao Yi, and Li Tingting. 2019. Spatial and Temporal Variation of Soil Carbon Storage and Organic Carbon Content in Leizhou Peninsula, Guangdong Province. South China Geology, 35(3): 373-379.
|
Kusi K K, Khattabi A, Mhammdi N, and Lahssini S. 2020. Prospective Evaluation of the Impact of Land Use Change on Ecosystem Services in the Ourika Watershed, Morocco. Land Use Policy, 97: 104796.
|
李寒冰,金晓斌,杨绪红,徐伟义,周寅康. 2019. 不同农田管理措施对土壤碳排放强度影响的Meta分析. 资源科学,41(9):1630-1640.
Li Hanbing, Jin Xiaobin, Yang Xuhong, Xu Weiyi, and Zhou Yankang. 2019. Meta-Analysis of the Effects of Different Farmland Management Measures on Soil Carbon Intensity. Resources Science, 41(9): 1630-1640.
|
李寒冰,金晓斌,韩博,徐伟义,周寅康. 2022. “双碳”目标下全域土地综合整治的学理研究与实践路径. 地理研究,41(12):3164-3182.
Li Hanbing, Jin Xiaobin, Han Bo, Xu Weiyi, and Zhou Yankang. 2022. Theoretical Research and Practical Strategy of Comprehensive Land Consolidation under the Goal of Carbon Emission Peak and Carbon Neutrality. Geographical Research, 41(12): 3164-3182.
|
Li J S, Guo X M, Chuai X W, Xie F J, Yang F, Gao R Y, and Ji X P. 2021. Reexamine China's Terrestrial Ecosystem Carbon Balance under Land Use-Type and Climate Change. Land Use Policy, 102: 105275.
|
李克让,王绍强,曹明奎. 2003. 中国植被和土壤碳贮量. 中国科学(D辑:地球科学),46(1):72-80. [Li Kerang, Wang Shaoqiang, and Cao Mingkui. 2003. Vegetation and Soil Carbon Stocks in China. Scientia Sinica(Terrae), 46(1): 72-80.]
|
李婷婷,陈恩. 2021. 广东韶关地区土壤有机碳储量特征及其影响因素. 华南地质,37(1):93-102.
Li Tingting and Chen En. 2021. Characteristics and Influencing Factors of Soil Organic Carbon Storage in Shaoguan, Guangdong Province. South China Geology, 37(1): 93-102.
|
Li Y R, Liu Y S, Long H L, and Cui W G. 2014. Community-Based Rural Residential Land Consolidation and Allocation Can Help to Revitalize Hollowed Villages in Traditional Agricultural Areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy, 39: 188-198.
|
Liang J S, Hu K, and Dai T Q. 2018. Ecological Network Analysis Quantifying the Sustainability of Regional Economies: A Case Study of Guangdong Province in China. Chinese Geographical Science, 28(1): 127-136.
|
林丽平,徐期瑚,罗勇,薛春泉,张宁. 2018. 广东主要乡土阔叶树种单木生长模型构建. 林业与环境科学,34(3):14-22.
Lin Liping, Xu Qihu, Luo Yong, Xue Chunquan, and Zhang Ning. 2018. Study on the Growth Models for Main Broadleaved Tree Species in Guangdong Province. Forestry and Environmental Science, 34(3): 14-22.
|
Liu R Q, Yu C, Jiang J, Huang Z B, and Jiang Y M. 2020. Farmer Differentiation, Generational Differences and Farmers' Behaviors to Withdraw from Rural Homesteads: Evidence from Chengdu, China. Habitat International, 103: 102231.
|
刘晓娟,黎夏,梁迅,石洪,欧金沛. 2019. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟. 热带地理,39(3):397-409.
Liu Xiaojuan, Li Xia, Liang Xun, Shi Hong, and Ou Jinpei. 2019. Simulating the Change of Terrestrial Carbon Storage in China Based on the FLUS-InVEST Model. Tropical Geography, 39(3): 397-409.
|
Mandlate L C, Cuamba E L, and Rodrigues F H G. 2019. Postrelease Monitoring Habitat Selection by Reintroduced Burchell's Zebra and Blue Wildebeest in Southern Mozambique. Ecology and Evolution, 9(11): 6458-6467.
|
Mooney H, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace G M, Palmer M, Scholes R, and Yahara T. 2009. Biodiversity, Climate Change, and Ecosystem Services. Current Opinion in Environmental Sustainability, 1(1): 46-54.
|
Negacz K, Petersson M, Widerberg O, Kok M, and Pattberg P. 2022. The Potential of International Cooperative Initiatives to Address Key Challenges of Protected Areas. Environmental Science & Policy, 136: 620-631.
|
柯钦华,周俏薇,孙传谆,李景刚,李灿,朱庆莹. 2023. 基于生态系统服务权衡的粤港澳大湾区土地利用冲突识别研究. 热带地理,43(7):1426-1439.
Ke Qinhua, Zhou Qiaowei, Sun Chuanzhun, Li Jinggang, Li Can, and Zhu Qingying. 2023. Identifying Land Use Conflict Based on Ecosystem Service Trade-Offs in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Tropical Geography, 43(7): 1426-1439.
|
乔陆印. 2019. 乡村振兴视域下农村土地整治的内涵重构与系统特征. 农业工程学报,35(22):58-65.
Qiao Luyin. 2019. Connotation Reconstruction and System Characteristics of Rural Land Consolidation from the Perspective of Rural Revitalization. Transactions of the Chinese Society of Agricultural Engineering, 35(22): 58-65.
|
覃国铭,张靖凡,周金戈,卢哲,王法明. 2023. 广东省红树林土壤碳储量及固碳潜力研究. 热带地理,43(1):23-30.
Qin Guoming, Zhang Jingfan, Zhou Jin'ge, Lu Zhe, and Wang Faming. 2023. Soil Carbon Stock and Potential Carbon Storage in the Mangrove Forests of Guangdong. Tropical Geography, 43(1): 23-30.
|
任向宁,董玉祥,王秋香. 2018. 珠三角核心区农田耕层土壤有机碳库储量时空变化特征及其影响因素识别. 热带地理,38(5):668-677.
Ren Xiangning, Dong Yuxiang, and Wang Qiuxiang. 2018. Temporal and Spatial Variation of Soil Organic Carbon Storage in the Core Area of Pearl River Delta and Identification of Influencing Factors. Tropical Geography, 38(5): 668-677.
|
Senaratne S, Rodrigo M, Jin X, and Perera S. 2021. Current Trends and Future Directions in Knowledge Management in Construction Research Using Social Network Analysis. Buildings, 11(12): 599.
|
Seadon J and Tookey J E. 2019. Drivers for Construction Productivity. Engineering, Construction and Architectural Management, 26(6): 945-961.
|
滕雅丽,谢苗苗,王回茴,陈燕,李峰. 2022. 资源型城市土地利用转型及其对生境质量的影响——以乌海市为例. 生态学报,42(19):1-11.
Teng Yali, Xie Miaomiao, Wang Huihui, Chen Yan, and Li Feng. 2022. Land Use Transition in Resource-Based Cities and Its Impact on Habitat Quality: A Case of Wuhai City. Acta Ecologica Sinica, 42(19): 1-11.
|
Vereijken P H. 2003. Transition to Multifunctional Land Use and Agriculture. NJAS: Wageningen Journal of Life Sciences, 50(2): 171-179.
|
王睿,张赫,强文丽,李凡,彭竞仪. 2021. 基于城镇化的中国县级城市碳排放空间分布特征及影响因素. 地理科学进展,40(12):1999-2010.
Wang Rui, Zhang He, Qiang Wenli, Li Fan, and Peng Jinyi. 2021. Spatial Characteristics and Influencing Factors of Carbon Emissions in County-Level Cities of China Based on Urbanization. Progress in Geography, 40(12): 1999-2010.
|
吴佩君,刘小平,黎夏,陈逸敏. 2016. 基于InVEST模型和元胞自动机的城市扩张对陆地生态系统碳储量影响评估——以广东省为例. 地理与地理信息科学,32(5):22-28,36,2.
Wu Peijun, Liu Xiaoping, Li Xia, and Chen Yimin. 2016. Impact of Urban Expansion on Carbon Storage in Terrestrial Ecosystems Based on InVEST Model and CA: A Case Study of Guangdong Province, China. Geography and Geo-Information Science, 32(5): 22-28, 36, 2.
|
奚小环,李敏,张秀芝,张燕平,张德存,张建新,窦磊,杨奕. 2013. 中国中东部平原及周边地区土壤有机碳分布与变化趋势研究. 地学前缘,20(1):154-165.
Xi Xiaohuan, Li Min, Zhang Xiuzhi, Zhang Yanping, Zhang Decun, Zhang Jianxin, Dou Lei, and Yang Yi. 2013. Research on Soil Organic Carbon Distribution and Change Trend in Middle-East Plain and Its Vicinity in China. Earth Science Frontiers, 20(1): 154-165.
|
薛春泉,徐期瑚,林丽平,罗勇,赵菡,雷渊才. 2019. 广东主要乡土阔叶树种单木生物量生长模型. 华南农业大学学报,40(2):65-75.
Xue Chunquan, Xu Qihu, Lin Liping, Luo Yong, Zhao Han, and Lei Yuancai. 2019. Biomass Growth Models for Individual Trees of Main Indigenous Broadleaf Tree Species in Guangdong Province. Journal of South China Agricultural University, 40(2): 65-75.
|
Zhang X R, Wang J, Song W, Wang F F, Gao X, Liu L, Dong K, and Yang D Z. 2022. Decoupling Analysis between Rural Population Change and Rural Construction Land Changes in China. Land, 11(2): 231.
|
杨忍,张菁,徐茜,罗秀丽. 2021. 城乡融合视角下农村闲置建设用地拆旧复垦的资本化效应——以广东省为例. 地理科学进展,40(1):114-123.
Yang Ren, Zhang Jing, Xu Qian, and Luo Xiuli. 2021. Capitalization Effect of Rural Land Reclamation from the Perspective of Rural-Urban Integration: A Case Study of Guangdong Province. Progress in Geography, 40(1): 114-123.
|
Yang W, Li X H, Li W H, Zhang Y T, Zhang H Z, and Ran Y H. 2022. Carbon Effect Calculation and Upgrading Strategy of Agricultural Land Consolidation Project in Urban Edge of Three Gorges Reservoir Area. Frontiers in Chemistry, 10: 1022644.
|
Ye C H, Zheng S W, and Gu E. 2021. Positive Effect of Village Debt on Land Transfer: Evidence from County-Level Panel Data of Village Finance in Zhejiang Province Edited by B. Xue. PLoS One, 16(7): e0255072.
|
张红爱. 2018. 广东8种主要乔木树种碳含量测定分析. 林业资源管理,(1):148-154.
Zhang, Hongai. 2018. Measurement and Analysis of Carbon Content Rates of Eight Tree Species in Guangdong Province. Forest Resources Management, (1): 148-154.
|
张利国,王占岐,李冰清. 2018. 湖北省土地整治项目碳效应核算及其分析. 自然资源学报,33(11):2006-2019.
Zhang Liguo, Wang Zhanqing, and Li Bingqing. 2018. Carbon Effect Accounting and Analysis of Land Consolidation in Hubei Province. Journal of Natural Resources, 33(11): 2006-2019.
|
张庶,金晓斌,杨绪红,单薇,周寅康. 2016. 农用地整治项目的碳效应分析与核算研究. 资源科学,38(1):93-101.
Zhang Shu, Jin Xiaobin, Yang Xuhong, Shan Wei, and Zhou Yankang. 2016. Determining and Estimating Impacts of Farmland Consolidation Projects on Regional Carbon Effects. Resources Science, 38(1): 93-101.
|
Zhong L N, Wang J, Zhang X, Ying L X, and Zhu C X. 2020. Effects of Agricultural Land Consolidation on Soil Conservation Service in the Hilly Region of Southeast China-Implications for Land Management. Land Use Policy, 95: 104637.
|
周毅,钟锡均,郭乐东,甘先华,黎艳明,张坤洪,李召青,梁远楠,辛凤坪,张卫强. 2009. 不同土地利用形式下表土有机碳含量和密度特征的研究. 广东林业科技,25(6):1-7.
Zhou Yi, Zhong Xijun, Guo Ledong, Gan Xianhua, Li Yanming, Zhang Kunhong, Li Zhaoqing, Liang Yuannan, Xin Fengping, and Zhang Weiqiang. 2009. A Study of Top soil Organic Carbon Concentration and Density under Different Land Use in West River Basin,Guangdong Province. Forestry and Environmental Science, 25(6): 1-7.
|
Zhou Z K, Liu D F, Sun Y Y, and He J H. 2022. Predicting Joint Effects of Multiple Land Consolidation Strategies on Ecosystem Service Interactions. Environmental Science and Pollution Research, 29(25): 37234-37247.
|
朱鑫. 2014. 珠江三角洲经济区土壤碳储量及有机碳时空变化规律研究. 华南地质与矿产,30(2):176-185.
Zhu Xin. 2014. Temporal and Spatial Variation of Organic Carbon and Soil Carbon Storage in the Pearl River Delta Economic Zone. South China Geology and Mineral Resources, 30(2): 176-185.
|
/
〈 |
|
〉 |