水文遥感
尹昊, 张景涵, 张承明, 钱永兰, 韩颖娟, 葛瑶, 帅丽华, 刘铭
利用卷积神经网络从遥感影像中提取水体时,水体对象边缘像素的特征与内部像素的特征之间往往存在较大差异,导致提取结果中边界模糊、内部像素与边缘像素的提取精度差异较大,影响了整体精度的提高。针对如何从高分辨率遥感影像中进行水体高精度、自动化提取的问题,文章首先以高分辨率遥感图像为基础,利用边缘提取算法生成边缘图像,然后以高分辨率遥感图像和边缘图像作为输入,建立了语义特征和边缘特征融合的高分辨率遥感图像水体提取模型(Semantic Feature and Edge Feature Fusion Network, SEF-Net),用于从高分辨率遥感图像中提取水体对象。实验结果表明,SEF-Net模型在3个数据集中的召回率(91.97%、92.07%、93.97%),精确率(91.12%、98.37%、97.88%),准确率(89.56%、95.07%、94.06%)和F1分数(91.54%、95.12%、95.88%)均优于对比模型,说明SEF-Net模型从高分辨率遥感图像中提取水体时,具有更高的精度和泛化能力。