热带地理 ›› 2019, Vol. 39 ›› Issue (2): 188-195.doi: 10.13284/j.cnki.rddl.003123
刘轶伦1,陈逸敏2,刘 颖3,王景丽1,张 晖1,3
Liu Yilun1, Chen Yimin2, Liu Ying3, Wang Jingli1 and Zhang Hui1,3
摘要: 准确刻画精细化尺度下的城市房租空间格局,对于研究城市居住行为、提高城市规划合理性十分重要。文章提出了一种基于互联网房租数据作为可靠数据源的城市房租空间格局制图方法。以深圳市作为研究区,通过广泛采集开放平台中用户发布的租房信息,绘制社区行政区尺度的房租空间分布图。房租空间制图涉及到对于没有样本数据区域平均房租的评估,因此,选取一系列与房租相关的房产属性、房屋区位及配套设施的评价指标,采用前馈神经网络技术构建评估模型。以2015年深圳市的住宅租赁市场作为研究对象,通过对结果的分析,以及与权威部门发布的统计数据进行比较,表明此方法能够有效地绘制社区尺度下城市房租的空间分布,模型预测结果的误差(%RMSE)为13.87%。所使用的互联网房租数据、POIs数据及前馈神经网络的建模工具均是开源的,而且所提出的方法论具有普适性,能够应用于其他研究区的房租空间格局制图,具有实践意义。