陈峰,李红波,刘亚静. 2018. 基于GIS和CASA的滇南山区植被NPP时空分异及其影响因素——以云南省元阳县为例. 生态学杂志,37(7):2148-2158. [Chen Feng, Li Hongbo and Liu Yajing. 2018. Spatio-temporal Differentiation and Influencing Factors of Vegetation Net Primary Productivity Using GIS And CASA: A Case Study in Yuanyang County, Yunnan. Chinese Journal of Ecology, 37(7): 2148-2158. ] 陈晓玲,曾永年. 2016. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例. 地理学报,71(1):35-48. [Chen Xiaoling and Zeng Yongnian. 2016. Spatial and Temporal Variability Of The Net Primary Production (NPP) and Its Relationship With Climate Factors in Subtropical Mountainous and Hilly Regions of China: A Case Study in Hunan Province. Acta Geographica Sinica, 71(1): 35-48. ] 池源,石洪华,王晓丽,李捷,丰爱平. 2015. 庙岛群岛南五岛生态系统净初级生产力空间分布及其影响因子. 生态学报,35(24):8094-8106. [Chi Yuan, Shi Honghua, Wang Xiaoli, Li Jie and Feng Aiping 2015. The Spatial Distribution and Impact Factors of Net Primary Productivity in The Island Ecosystem of Five Southern Islands of Miaodao Archipelago. Acta Ecologica Sinica, 35(24): 8094-8106. ] Field C B, Randerson J T and Malmstrom C M. 1995. Global Netprimary Production-Combining Ecology and Remote Sensing. Remote Sensing of Environment, 51(1): 74-88. Groot R S D, Wilson M A and Boumans R M J. 2002. A Typology for the Classification, Description and Valuation of Ecosystem Function, Goods and Services. Ecological Economics, 41(3): 393-408. 何勇,董文杰,季劲均,丹利. 2005. 基于AVIM的中国陆地生态系统净初级生产力模拟. 地球科学进展,20(3):345-349. [He Yong, Dong Wenjie, Ji Jinjun and Dan Li. 2005. The Net Primary Production Simulation of Terrestrial Ecosystems in China by AVIM. Advances in Earth Science, 20(3): 345-349. ] 江洪,汪小钦,吴波,陈芸芝. 2010. 地形调节植被指数构建及在植被覆盖度遥感监测中的应用. 福州大学学报(自然科学版),38(4):527-532. [Jiang Hong, Wang Xiaoqin, Wu Bo and Chen Yunzhi. 2010. A Topography-Adjusted Vegetation Index(TAVI) and Its Application in Vegetation Fraction Monitoring. Journal of Beijing Forestry University, 38(4): 527-532. ] 柯金虎,朴世龙,方精云. 2003. 长江流域植被净第一性生产力及其时空格局研究. 植物生态学报,27(6):764-770. [Ke Jinhu, Piao Shilong and Fang Jingyun. 2003. NPP and Its Spatio-temporal Patterns in the Yangtze River Watershed. Acta Phytoecologica Sinica, 27(6): 764-770. ] 柯丽娜,王权明,宫国伟. 2011. 海岛可持续发展理论及其评价研究. 资源科学,33(7):1304-1309. [Ke Lina, Wang Quanming and Gong Guowei. 2017. Evaluation of Island Sustainable Development and Its Applications. Resources Science, 33(7): 1304-1309. ] Li Jia, Cui Yaoping, Liu Jiyuan, Shi Wenjiao and Qin Yaochen. 2013. Estimation and Analysis of Net Primary Productivity by Integrating MODIS Remote Sensing Data with A Light Use Efficiency Model. Ecological Modelling, 252: 3-10. 罗艳,王春林. 2009. 基于MODIS NDVI的广东省陆地生态系统净初级生产力估算. 生态环境学报,18(4):1467-1471. [Luo Yan and Wang Chunlin. 2009. Valuation of the Net Primary Production of Terrestrial Ecosystems in Guangdong Province Based on Remote Sensing. Ecology and Environment, 18(4): 1467-1471. ] Melillo J M, Mcguire A D, Kicklighter D W, Moore B, Vorosmarty C J and Schloss A L. 1993. Global Climate Change and Terrestrial Net Primary Production. Nature, 363(6426): 234-240. Prince S D and Goward S N. 1995. Global Primary Production: A Remote Sensing Approach. Journal of Biogeography, 22(4/5): 815-835. 潘竟虎,文岩. 2015. 中国西北干旱区植被碳汇估算及其时空格局. 生态学报,35(23):7718-7728. [Pan Jinghu and Wen Yan. 2015. Estimation and Spatial-Temporal Characteristics of Carbon Sink in the Arid Region of Northwest China. Acta Ecologica Sinica, 35(23): 7718-7728. ] 潘耀忠,李晓兵,何春阳. 2000. 中国土地覆盖综合分类研究——基于 NOAA/AVHRR和Holdridge PE. 第四纪研究,20(3):270-281. [Pan Yaozhong, Li Xiaobing and He Chunyang. 2000. Research on Comprehensive Land Cover Classification in China: Based on Noaa/ Avhrr and Holdridge PE Index. Quaternaryences, 20(3): 270-281. ] 彭聪姣,钱家炜,郭旭东,赵何伟,胡娜胥,杨琼,陈长平,陈鹭真. 2016. 深圳福田红树林植被碳储量和净初级生产力. 应用生态学报, 27(7):2059-2065. [Peng Congjiao, Qian Jiawei, Guo Xudong, Zhao Hewei, Hu Naxu, Yang Qiong, Chen Changping and Chen Luzhen. 2016. Vegetation Carbon Stocks and Net Primary Productivity of The Mangrove Forests in Shenzhen, China. Chinese Journal of Applied Ecology, 27(7): 2059-2065. ] Ruimy A and Kergoat L Bondeau . 2010. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Analysis Of Differences in Light Absorption and Light-Use Efficiency. Global Change Biology, 5(S1): 56-64. Running S W. 2012. A Measurable Planetary Boundary for the Biosphere. Science, 337(6101): 1458-1459. Running S W, Thornton P E, Nemani R and Glassy J. 2000. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. Methods in Ecosystem Science, 44-57. DOI: 10.1007/978-1-4612-1224-9_4. 孙红雨,王长耀,牛铮,布和敖斯尔,李兵. 1998. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析. 遥感学报,2(3):204-210. [Sun Hongyu, Wang Changyao, Niu Zheng, Bukhosor and Li Bing. 1998. Analysis of the Vegetation Cover Change and the Relationship between NDVI and Environmental Factors by Using NOAA Time Series Data. Journal of Remote Sensing, 2(3): 204-210. ] Torres-Sánchez J, Pena J M, De Castro A I and López-Granados F. 2014. Multi-temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Computers and Electronics in Agriculture, 103: 104-113. 陶波,李克让,邵雪梅,曹明奎. 2003. 中国陆地净初级生产力时空特征模拟. 地理学报,58(3):372-380. [Tao Bo, Li Kerang, Shao Xuemei and Cao Mingkui. 2003. Temporal and Spatial Pattern of Net Primary Production of Terrestrial Ecosystems in China. Acta Geographica Sinica, 58(3): 372-380. ] Uchijima Z and Seino H. 1985. Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetations:(1) Chikugo Model for Evaluating Net Primary Productivity. Journal of Agricultural Meteorology, 40(4): 343-352. 王乐,时晨,田金炎,宋晓楠,贾明明,李小娟,刘晓萌,钟若飞,殷大萌,杨杉杉,郭先仙. 2018. 基于多源遥感的红树林监测. 生物多样性,26(8):838-849. [Wang Le, Shi Chen, Tian Jinyan, Song Xiaonan, Jia Mingming, Li Xiaojuan, Liu Xiaomeng, Zhong Ruofei, Yin Dameng, Yang Shanshan and Guo Xianxian. 2018. Researches on Mangrove Forest Monitoring Methods Based on Multi-Source Remote Sensing. Biodiversity Science, 26(8): 838-849. ] 吴艳艳,吴志峰,余世孝. 2017. 定量评价人类活动对净初级生产力的影响. 应用生态学报,28(8):2535-2544. [Wu Yanyan, Wu Zhifeng and Yu Shixiao. 2017. Quantitative Assessment of The Impacts of Human Activities on Net Primary Productivity. Chinese Journal of Applied Ecology, 28(8): 2535-2544. ] Zhang Y and Zhang Xiaoli. 2017. Estimation of Net Primary Productivity of Different Forest Types Based on Improved CASA Model in Jing-Jin-Ji Region, China. Journal of Sustainable Forestry, 36(3): 1-15. 张猛,曾永年. 2018. 融合高时空分辨率数据估算植被净初级生产力. 遥感学报,22(1):147-156. [Zhang Meng and Zeng Yongnian. 2018. Net Primary Production Estimation by Using Fusion Remote Sensing Data With High Spatial And Temporal Resolution. Journal of Remote Sensing, 22(1): 147-156. 张新时. 1989. 植被的PE(可能蒸散)指标与植被-气候分类(一)——几种主要方法与PEP程序介绍. 植物生态学报,13(1):197-207. [Zhang Xinshi. 1989. The Potential Evapotranspiration(PE) Index for Vegetation and Vegetation-Climatic Classification(I) -an Introduction of Main Methods and PEP Program. Acta Phytoecologica Sinica, 13(1): 197-207. ] 张正健,李爱农,边金虎,赵伟,南希,靳华安,谭剑波,雷光斌,夏浩铭,杨勇帅,孙明江. 2016. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究. 遥感技术与应用,31(1):51-62. [Zhang Zhengjian, Li Ainong, Bian Jinhu, Zhao Wei, Nan Xi, Jin Huanan, Tan Jianbo, Lei Guangbin, Xia Haoming, Yang Yongshuai and Sun Mingjiang. 2016. Estimating Aboveground Biomass of Grassland in Zoige by Visible Vegetation Index Derived from Unmanned Aerial Vehicle Image. Remote Sensing Technology and Application, 31(1): 51-62. ] 周爱萍,向悟生,姚月锋,黄甫昭,李先琨. 2014. 广西植被净初级生产力(NPP)时空演变及主要影响因素分析. 广西植物,(5):622-628. [Zhou Aiping, Xiang Wusheng, Yao Yuefeng, Huang Fuzhao and Li Xiankun. 2014. Spatial and Temporal Variability of the Net Primary Production (NPP) and Its Relationship with Climate Factors in Subtropical Mountainous and Hilly Regions of China::A Case Study in Hunan Province. Guihaia, (5): 622-628. ] 周广胜,张新时. 1996. 全球气候变化的中国自然植被的净第一性生产力研究. 植物生态学报,20(1):11-19. [Zhou Guangsheng and Zhang Xinshi. 1996. Study on NPP of Natural Vegetation in China Under Global Climate Change. Acta Phytoecologica Sinica, 20(1): 11-19. ] 朱文泉,张锦水,潘耀忠,阳小琼,贾斌. 2007. 中国陆地生态系统生态资产测量及其动态变化分析. 应用生态学报,18(3):586-594. [Zu Wenquan, Zhang Jinshui, Pan Yaozhong, Yang Xiaoqiong and Jia Bin. 2007. Measurement and Dynamic Analysis of Ecological Capital of Terrestrial Ecosystem in China. Chinese Journal of Applied Ecology, 18(3): 586-594. ] |