都市区建成环境对“共享单车+地铁”通勤使用影响的空间异质性——以深圳市为例
郭源园(1989―),男,侗族,湖南怀化人,副研究员,博士,硕士生导师,研究方向为城市交通规划与政策、城市与区域规划,(E-mail)yuanyuanguo@tju.edu.cn; |
收稿日期: 2022-05-27
修回日期: 2022-07-27
网络出版日期: 2023-06-13
基金资助
四川省教育厅人文社会科学重点研究基地重点项目——“四川省资源型城市精明发展评估、机制及策略研究”(ZYZX-ZD-2101)
国家自然科学基金面上项目——“城镇化政策演进与京津冀乡村空间网络变迁的响应机制研究”(51978447)
Spatial Heterogeneity of the Built Environment Effect on the Use of a Bikeshare-Metro Commute in a Metropolitan Area: A Case Study of Shenzhen
Received date: 2022-05-27
Revised date: 2022-07-27
Online published: 2023-06-13
“共享单车+地铁”的多模式组合出行被认为能较好地解决“最后一公里”问题,同时也能进一步促进大都市区TOD(Transit-Oriented Development)的建设和发展。以中国大都市区之一的深圳市为案例,基于ofo停车位置大数据挖掘“共享单车+地铁”的接驳使用,应用全局回归分析(OLS回归)、地理加权回归(GWR)和半参数地理加权回归(SGWR)模型对建成环境与“共享单车+地铁”接驳使用的关系进行探讨,并揭示建成环境影响的空间性。研究发现,SGWR比GWR和OLS模型能更好地解释建成环境对驶入接驳的影响,但SGWR并不适用于驶出接驳的建模。模型分析表明,建成环境对不同接驳类型(驶入和驶出接驳)的影响不尽相同,人口密度、主干道和进站客流3个正向因子以及中学数量、地铁站点和交叉路口3 个负向因子对驶入接驳的影响呈现出了明显的空间差异;相比之下,办公用地、公园广场、公交站点以及出站客流在大部分地铁站点对于驶出接驳的影响表现出正相关,而居住用地、中学数量、地铁站点及 CBD 距离则表现出负相关。
郭源园 , 吴磊 , 曾鹏 . 都市区建成环境对“共享单车+地铁”通勤使用影响的空间异质性——以深圳市为例[J]. 热带地理, 2023 , 43(5) : 872 -884 . DOI: 10.13284/j.cnki.rddl.003682
Recently, dockless bikeshare (DBS), a new bikeshare program that does not feature fixed dock stations, has been developed rapidly in China and has also offered a decent solution to the first- and last-mile problem. In addition, the integration of DBS and metro strongly promotes the transit-oriented development, particularly in the metropolitan areas of China. To achieve the seamless connection between DBS and metro transit, the spatial variation of the effects of urban built environment, particularly in high-density metropolitan areas, should be explored to advance the targeted policy interventions in different urban spaces. Using data from one of the largest DBS operators in China (ofo), this study measured the integrated use of DBS and the metro quantitatively, and it employed geographically and semiparametric geographically weighted regression (GWR and SGWR, respectively) to examine the effects of the built environment on the integrated use, using Shenzhen as a case study. The findings show that (1) The SGWR model performs better than GWR and OLS in explaining the relationship between built environment and access integrated use, whereas SGWR is not applicable for the egress integrated use. (2) Three positive determinants of population density, major road length and inbound metro ridership, and three negative determinants of metro density, secondary school, and intersection density have been examined with spatial effects on the access integration. (3) For egress integration, official land use, park, bus stops, and outbound metro ridership have positive and spatial effects, while residential land use, number of secondary school, metro density and distance to CBD (Central Business District) exert negative spatial effects. The results indicate that the built environment elements usually affect the integrated use with spatial variation. Furthermore, the access and egress integration use of DBS metro largely depends on the characteristics of built environment of the origin and destination metro catchment, respectively. This work provides insight into how the DBS-metro integration, which is divided into access and egress patterns, is spatially affected by urban built environment in the Chinese metropolitan context. The results will also provide a reference for the local government to carry out the targeted policies and planning to encourage the connection between DBS and metro transit more successfully. For DBS operators, the results also contribute to allocating the bikes more efficiently, which is adapted to the dynamic demand-supply at different urban spaces.
表1 变量描述和描述性统计Table 1 Description of variables and descriptive statistics |
变量 | 描述 | 最小值 | 最大值 | 平均值 | 标准差 | |
---|---|---|---|---|---|---|
因变量 | 驶入接驳(YA ) | 地铁站早高峰驶入接驳的平均次数/次 | 0 | 514.67 | 117.12 | 114.82 |
驶出接驳(YE ) | 地铁站早高峰驶出接驳的平均次数/次 | 0 | 506.67 | 86.00 | 80.48 | |
自变量 | 人口密度 | 缓冲区内的人口密度/(千人∙km-2) | 3.59 | 58.97 | 27.15 | 13.54 |
就业密度 | 缓冲区内的就业密度/(千人∙km-2) | 2.04 | 52.20 | 16.37 | 10.78 | |
熵 | 缓冲区内土地利用熵 a | 0.51 | 0.83 | 0.67 | 0.06 | |
商业用地 | 缓冲区内商业用地的比例/% | 0.10 | 20.83 | 7.25 | 3.94 | |
办公用地 | 缓冲区内办公用地的比例/% | 0 | 19.17 | 5.52 | 5.02 | |
工业用地 | 缓冲区内工业用地的比例/% | 0.03 | 64.04 | 18.75 | 16.27 | |
居住用地 | 缓冲区内居住小区的比例/% | 5.76 | 69.68 | 41.07 | 14.63 | |
中学数量 | 缓冲区内中学的数目/个 | 0 | 14 | 6.01 | 3.24 | |
公园/广场 | 缓冲区内公园/广场的数目/个 | 0 | 22 | 8.17 | 5.53 | |
餐馆 | 缓冲区内餐馆(如早餐店、快餐店等)的数目/个 | 5 | 1564 | 497.48 | 372.78 | |
商场 | 缓冲区内餐馆(如超市、购物中心及菜市场等)的数目/个 | 8 | 207 | 80.25 | 44.63 | |
公交站点 | 缓冲区内公交站点的数目/个 | 18 | 330 | 175.03 | 64.32 | |
地铁站点 | 缓冲区内地铁站点的数目/个 | 1 | 17 | 6.70 | 3.94 | |
单车道 | 缓冲区内专用单车道的长度/km | 0 | 43.94 | 8.81 | 9.42 | |
城市快速路 | 缓冲区内城市快速路的长度/km | 0 | 28.14 | 8.74 | 5.52 | |
主干道 | 缓冲区内城市主干道的长度/km | 11.93 | 97.21 | 50.41 | 17.52 | |
支路 | 缓冲区内城市支路的长度/km | 8.63 | 92.56 | 44.05 | 16.56 | |
交叉路口 | 缓冲区内交叉路口的数目/个 | 0.13 | 1.30 | 0.61 | 0.25 | |
CBD距离 | 地铁站到福田CBD的距离/km | 0.22 | 26.54 | 5.67 | 5.85 | |
进站客流 | 地铁站日均进站客流/万人 | 0.04 | 7.92 | 1.36 | 1.11 | |
出站客流 | 地铁站日均出站客流/万人 | 0.04 | 8.03 | 1.36 | 1.15 |
|
表2 OLS分析结果Table 2 Results of OLS analysis |
变量 | 驶入接驳 | 驶出接驳 | |||||
---|---|---|---|---|---|---|---|
系数 | 标准差 | t值 | 系数 | 标准差 | t值 | ||
人口密度 | 2.534** | 1.093 | 2.318 | -0.061 | 0.734 | -0.083 | |
熵 | 80.345 | 171.921 | 0.467 | -20.287 | 115.420 | -0.176 | |
商业用地 | 144.399 | 223.989 | 0.645 | -93.448 | 150.282 | -0.622 | |
办公用地 | -494.330** | 250.574 | -1.973 | 386.494** | 168.182 | 2.298 | |
居住用地 | 53.921 | 90.420 | 0.596 | -188.903*** | 60.708 | -3.112 | |
中学数量 | -8.824** | 4.038 | -2.185 | -4.894* | 2.710 | -1.806 | |
公园广场 | -1.729 | 2.017 | -0.857 | 3.121** | 1.354 | 2.306 | |
公交站点 | 0.186 | 0.346 | 0.536 | 0.602*** | 0.232 | 2.594 | |
地铁站点 | -10.520** | 4.646 | -2.264 | -13.411*** | 3.117 | -4.303 | |
单车道 | -0.986 | 1.292 | -0.763 | 0.606 | 0.868 | 0.698 | |
城市快速路 | 3.385* | 1.806 | 1.875 | 1.546 | 1.212 | 1.276 | |
主干道 | 4.290*** | 1.083 | 3.960 | 1.163 | 0.727 | 1.601 | |
交叉路口 | -0.112* | 0.066 | -1.676 | -0.069 | 0.044 | -1.549 | |
CBD距离 | -6.760*** | 2.332 | -2.898 | -8.592*** | 1.566 | -5.486 | |
进(出)站客流a | 29.594*** | 6.987 | 4.235 | 15.391*** | 4.513 | 3.410 | |
常量 | -83.694 | 126.782 | -0.660 | 141.582 | 86.092 | 1.624 | |
R 2 | 0.461 | 0.506 | |||||
Adjusted R 2 | 0.400 | 0.450 | |||||
AICc | 1 898.670 | 1 771.950 |
|
表3 OLS、GWR和SGWR模型结果对比Table 3 Comparisons between OLS, GWR, and SGWR modeling results |
接驳类型 | 模型参数 | R 2 | 调整R 2 | AICc |
---|---|---|---|---|
驶入 | OLS | 0.451 | 0.418 | 1 884.745 |
GWR | 0.719 | 0.619 | 1 847.087 | |
SGWR | 0.728 | 0.645 | 1 814.335 | |
驶出 | OLS | 0.484 | 0.453 | 1 761.907 |
GWR | 0.718 | 0.622 | 1 730.700 | |
SGWRa | — | — | — |
|
表4 驶入接驳的SGWR分析结果Table 4 Results of SGWR model for the access integrated use |
参数 | 全局变量 | 参数 | 局部变量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
办公用地 | 城市快速路 | CBD距离 | 人口密度 | 中学数量 | 地铁站点 | 主干道 | 交叉路口 | 进站客流 | ||
系数 | 62.211 | 3.175*** | -6.280*** | 均值 | 2.95 | 2.937 | -3.995 | 2.080 | -0.153 | 32.753 |
标准差 | 246.524 | 1.054 | 1.666 | 最小值 | -2.695 | -36.249 | -30.772 | 0.576 | -0.295 | -19.51 |
t值 | 0.252 | 3.012 | -3.77 | 最大值 | 21.29 | 12.605 | 14.325 | 5.257 | -0.008 | 83.437 |
— | — | — | — | 第一四分位数 | -1.367 | -0.906 | -12.403 | 1.222 | -0.218 | 25.205 |
— | — | — | — | 中位数 | 0.591 | 6.296 | -3.733 | 1.756 | -0.146 | 33.473 |
— | — | — | — | 第三四分位数 | 5.789 | 8.986 | 5.511 | 2.749 | -0.109 | 39.698 |
— | — | — | — | DIFF | -36.067 | -27.807 | -25.792 | -1.049 | -2.960 | -20.444 |
|
表5 驶出接驳的GWR分析结果Table 5 Results of GWR model for the egress integrated use |
局部变量 | 均值 | 最小值 | 最大值 | 第一四分位数 | 中位数 | 第三四分位数 | DIFF |
---|---|---|---|---|---|---|---|
常量 | 160.273 | -10.991 | 334.012 | 105.776 | 137.709 | 217.336 | -18.563 |
办公用地 | 133.794 | -764.739 | 962.071 | -403.337 | 60.426 | 706.046 | -6.002 |
居住用地 | -191.245 | -347.214 | 15.863 | -260.656 | -212.922 | -121.802 | -20.595 |
中学数量 | -2.741 | -15.684 | 3.119 | -4.056 | -2.615 | -0.665 | -4.068 |
公园广场 | 4.102 | -0.208 | 10.722 | 1.516 | 2.826 | 6.713 | -5.143 |
公交站点 | 0.286 | -0.279 | 1.225 | 0.077 | 0.263 | 0.488 | -113.644 |
地铁站点 | -9.255 | -30.919 | 6.403 | -21.651 | -7.121 | 3.531 | -19.291 |
CBD距离 | -7.851 | -24.305 | 9.675 | -13.377 | -7.024 | -1.965 | -2.190 |
出站客流 | 18.066 | 2.054 | 40.657 | 8.439 | 15.092 | 26.508 | -8.190 |
1 https://www.openstreetmap.org
郭源园:明确研究主题、论文框架,确定研究方法,完成数据处理和论文的起草;
吴 磊:共同完成命题提出、研究设计、搜集资料和图形可视化;
曾 鹏:共同完成研究框架和论文修订。
Brunsdon C, Fotheringham A, and Charlton M. 2002. Geographically Weighted Summary Statistics: A Framework for Localized Exploratory Data Analysis. Computers, Environment and Urban Systems, 26(6): 501-524.
|
曹新宇. 2015. 社区建成环境和交通行为研究回顾与展望:以美国为鉴. 国际城市规划,30(4):46-52.
Cao Xinyu. 2015. Examining the Relationship between Neighborhood Built Environment and Travel Behavior: A Review from the US Perspective. Urban Planning International, 30(4): 46-52.
|
曹雪柠,王炜,季彦婕,赵琳娜. 2015. 公共自行车换乘轨道交通行为影响因素分析. 交通运输工程与信息学报,13(4):96-101.
Cao Xuening, Wang Wei, Ji Yanjie, and Zhao Linna. 2015. Influence Factors of Transfer Behavior between Urban Rail Transit and Public Bicycle. Journal of Transportation Engineering and Information, 13(4): 96-101.
|
Cervero R, and Kockelman K. 1997. Travel Demand and the 3Ds: Density, Diversity, and Design. Transportation Research Part D: Transport and Environment, 2(3): 199-219.
|
Chen M, Wang D, Sun Y, Waygood E O D, and Yang W. 2020. A Comparison of Users’ Characteristics between Station-Based Bikesharing System and Free-Floating Bikesharing System: Case Study in Hangzhou, China. Transportation, 47: 689-704.
|
Ewing R, and Cervero R. 2010. Travel and the Built Environment. Journal of the American Planning Association, 76(3): 265-294.
|
古恒宇,孟鑫,沈体雁,崔娜娜. 2020. 中国城市流动人口居留意愿影响因素的空间分异特征. 地理学报,75(2):240-254.
Gu Hengyu, Meng Xin, Shen Tiyan, and Cui Nana. 2020. Spatial Variation of the Determinants of China's Urban Floating Population's Settlement Intention. Acta Geographica Sinica, 75(2): 240-254.
|
郭蒙. 2017. 共享单车的市场饱和度研究. 中国商论,(23):3-4. [Guo Meng. 2017. Research on Market Saturation of Shared Bikes. Chinese Commerce, (23): 3-4.]
|
郭素萍,甄峰,尹秋怡. 2017. 城市公共自行车出行时空间特征分析规划师,33(6):112-118.
Guo Suping, Zhen Feng, and Yin Qiuyi. 2017. Analysis on Space-Temporal Characters of Public Bicycles. Planners, 33(6): 112-118.
|
Guo Y, and He S Y. 2020. Built Environment Effects on the Integration of Dockless Bike Sharing and the Metro. Transportation Research Part D: Transport and Environment, 83: 102335.
|
Guo Y, Yang L, Lu Y, and Zhao R. 2021a. Dockless Bikeshare as Feeder Mode of Metro? The Role of Feeder Process-Related Built Environment. Sustainable Cities and Society, 65: 102594.
|
Guo Y, and He S Y. 2021b. Perceived Built Environment Correlates with the Integrated Usage of Dockless Bikeshare and Metro. Transportation Research Part D: Transport and Environment, 92: 102693.
|
Guo Y and He S Y. 2021c. The Role of Objective and Perceived Built Environments in Affecting Dockless Bike-Sharing as a Feeder Mode Choice of Metro Commuting. Transportation Research Part A: Policy and Practice,149: 377-396.
|
黄一哲,孙健. 2018. “自行车+轨道交通”导向型城市空间发展策略研究——以上海为例. 交通与运输,34(5):6-9.
Huang Yizhe, and Sun Jian. 2018. Urban Spatial Development Strategy of “Bicycle + Rail Transit” Oriented City: A Case Study of Shanghai. Traffic and Transportation, 34(5): 6-9.
|
Ji Y, Ma X, Yang M, Jin Y, and Gao L. 2018. Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability, 10(5): 1526.
|
蒋聪之. 2015. 基于轨道交通接驳的公共自行车租赁点规划方法研究. 南京:东南大学.
Jiang Congzhi. 2015. Planning Method of Public Bicycle Rental Point Based on Rail Transit Connection. Nanjing: Southeast University.
|
Krizek K, and Stonebraker E. 2010. Bicycling and Transit: A Marriage Unrealized. Transportation Research Record: Journal of the Transportation Research Board, 2144: 161-167.
|
Keijer M J N, and Rietveld P. 2000. How do People Get to the Railway Station? The Dutch Experience. Transportation Planning and Technology, 23(3): 215-235.
|
Lin J, Zhao P, Takada K, Li S, Yai T, and Chen C. 2018. Built Environment and Public Bike Usage for Metro Access: A Comparison of Neighborhoods in Beijing, Taipei, and Tokyo. Transportation Research Part D: Transport and Environment, 63 (1): 209-221.
|
马庚华,孙祎峥,邢金洋,翁心雨,王天童. 2020. 公共及共享自行车接驳轨道交通方式选择概率. 贵州大学学报(自然科学版),37(1):92-97.
Ma Genghua, Sun Yizheng, Xing Jinyang, Weng Xinyu, and Wang Tiantong. 2020. Probability of Public and Shared Bicycle Connecting to Rail Transit. Journal of Guizhou University (Natural Science), 37(1): 92-97.
|
Ma X, Ji Y, Jin Y, Wang J, and He M. 2018. Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model. Sustainability, 10(11): 3949.
|
Ni Y, and Chen J. 2020. Exploring the Effects of the Built Environment on Two Transfer Modes for metros: Dockless Bike Sharing and Taxis. Sustainability, 12(5): 2034.
|
潘海啸,薛松,赵婷. 2012. 多模式平衡交通体系的构建——自行车与轨道交通间的换乘. 现代城市研究,27(9):23-27,41.
Pan Haixiao, Xue Song, and Zhao Ting. 2012. Construction of the Mode to Balance the Traffic System: The Joint of the Bicycle and Rail Traffic. Modern Urban Research, 27(9): 23-27, 41.
|
Pucher J and Buehler R. 2009. Integrating Bicycling and Public Transport in North America. Journal of Public Transportation, 12: 79-104.
|
肖晗. 2022. 深圳共享单车日均使用量138万人次,市交通运输局开展运营服务问卷调查. (2022-06-17)[2022-10-31]. https://baijiahao.baidu.com/s?id=1735857656481618820&wfr=spider&for=pc.
Xiao H. 2022. Shenzhen Has an Average Daily Usage of 1.38 Million for Bikeshare, a Result from the Questionnaire Survey on Bikeshare Operation Services Conducted by Municipal Transportation Bureau.(2022-06-17)[2022-10-31]. https://baijiahao.baidu.com/s?id=17358576564816 18820&wfr=spider&for=pc.
|
深圳市交通运输局. 2019. 《深圳市互联网租赁自行车发展评估报告(2019年4月)》(2019-06-12)[2022-10-31]. https://www.sohu.com/a/320109128_748407.
Shenzhen Transportation Bureau. 2019. Evaluation Report on the Development of Internet Rental Bicycles in Shenzhen of April in 2019. (2019-06-12) [2022-10-31]. https://www.sohu.com/a/320109128_748407.
|
深圳市交通运输局. 2020. 《2019年深圳市综合交通年度评估报告》(2020-08-20)[2022-10-31]. http://www.sutpc.com/news/jishufenxiang/605.html.
Shenzhen Transportation Bureau. 2020. Annual Evaluation Report of Comprehensive Transportation in Shenzhen in 2019 (2020-08-20)[2022-10-31]. http://www.sutpc.com/news/jishufenxiang/605.html.
|
Wang R, and Chen L. 2013. Bicycle-Transit Integration in the United States, 2001-2009. Journal of Public Transportation, 16(3): 95-119.
|
Wang J, and Cao X. 2017. Exploring Built Environment Correlates of Walking Distance of Transit Egress in the Twin Cities. Journal of Transport Geography, 64: 132-138.
|
魏宗财,莫海彤,刘玉亭. 2018. 面向智慧城市的共享单车出行时空间特征研究——以广州天河中心区为例. 科技导报,36(18):71-80.
Wei Zongcai, Mo Haitong, and Liu Yuting. 2018. Spatiotemporal Characteristics of Bike-Sharing: An Empirical Study of Tianhe District, Guangzhou. Science & Technology Review, 36(18): 71-80.
|
Yang L, Chau K W, Szeto W Y, Cui X, and Wang X. 2020a. Accessibility to Transit, by Transit, and Property Prices: Spatially Varying Relationships. Transportation Research Part D: Transport and Environment, 85: 102387.
|
Yang L, Chu X, Gou Z, Yang H, Lu Y, and Huang W. 2020b. Accessibility and Proximity Effects of Bus Rapid Transit on Housing Prices: Heterogeneity across Price Quantiles and Space. Journal of Transport Geography,88: 102850.
|
Yang L, Ao Y, Ke J, Lu Y, and Liang Y. 2021. To Walk or not to Walk? Examining Non-Linear Effects of Streetscape Greenery on Walking Propensity of Older Adults. Journal of Transport Geography, 94: 103099.
|
尹秋怡,甄峰,罗桑扎西,阎欣,郭素. 2018. 新城公共自行车出行空间影响因素及布局建议. 现代城市研究,33(12):9-15.
Yin Qiuyi, Zeng Feng, Luosang Zhaxi, Yan Xin, and Guo Su. 2018. Study on Urban Spatial Influencing Factors of Public Bicycle Trips and Station Distribution Suggestions in New Town. Modern Urban Research, 33(12): 9-15.
|
张可,徐晓燕. 2019. 共享单车与轨道交通接驳利用率研究——以合肥地铁一号线为例. 华中建筑,37(10):62-68.
Zhang Ke, and Xu Xiaoyan. 2019. The Connection Utilization of Bicycles-Sharing System and Urban Rail Transit: Taking Hefei Metro Line 1 as an Example. Huazhong Architecture, 37(10): 62-68.
|
Zhao P, and Li S. 2017. Bicycle-Metro Integration in a Growing City: The Determinants of Cycling as a Transfer Mode in Metro Station Areas in Beijing. Transportation Research Part A: Policy and Practice, 99: 46-60.
|
周杨,张冰琦,李强. 2014. 公共自行车系统的研究进展与展望. 城市发展研究,21(9):118-124.
Zhou Yang, Zhang Bingqi, and Li Qiang. 2014. Research Progress and Prospect in the Study of Public Bicycle System. Urban Development Studies, 21(9): 118-124.
|
朱玮,庞宇琦,王德,余雄伟. 2012. 公共自行车系统影响下居民出行的变化与机制研究——以上海闵行区为例. 城市规划学刊,(5):76-81.
Zhu Wei, Pang Yuqi, Wang De, and Yu Xiongwei. 2012. Travel Behavior Change after the Introduction of Public Bicycle System: Case Study of Minhang District, Shanghai. Urban Planning Forum, (5): 76-81.
|
Zuo T, Wei H, and Rohne A. 2018. Determining Transit Service Coverage by Non-Motorized Accessibility to Transit: Case Study of Applying GPS Data in the Cincinnati Metropolitan Area. Journal of Transport Geography, 67: 1-11.
|
/
〈 |
|
〉 |