基于实时路况的城市公交出行相对时空效率特征
许彩薇(1999—),女,广东深圳人,硕士研究生,研究方向为智慧交通,(E-mail)xucaiwei2021@email.szu.edu.cn; |
收稿日期: 2022-07-14
修回日期: 2022-10-17
网络出版日期: 2023-08-02
基金资助
国家自然科学基金项目——基于时空特征的公交需求建模与多目标线网优化(42071357)
Characteristics of Relative Spatiotemporal Efficiency of Urban Public Transit Based on Real-Time Road Conditions
Received date: 2022-07-14
Revised date: 2022-10-17
Online published: 2023-08-02
文章提出了基于实时路况的城市公交出行时空效率分析框架。首先,通过调用互联网地图接口获取小汽车和公交基于早午晚3个时段实时路况的出行时间,并通过公交智能卡数据获取公交出行量;然后,构建一种基于相对时间效率和出行量加权的城市公交出行时空效率评价指数模型;最后,以深圳市为案例进行分析。结果表明:1)公交相对于小汽车的出行时间,在早高峰差异较大,晚高峰差异较小,即在晚高峰有较高的相对时间效率;2)在空间分布上,中心城区公交站点的时空效率指数在3个时间段整体上呈现较大的波动,外围区域高指数的站点以地铁站点为主;3)公交站点的时空效率指数在3个时间段均呈现空间聚集特征,中心城区和外围城区的站点存在不同的聚类特征,中心城区的站点在晚高峰时段公交出行相对效率更高;4)不同类型的公交站点其时空效率指数会有所差异,地铁站点的时空效率指数普遍比公汽站点高。
许彩薇 , 黄正东 , 赵天鸿 , 张莹 , 黄嘉诚 . 基于实时路况的城市公交出行相对时空效率特征[J]. 热带地理, 2023 , 43(7) : 1221 -1233 . DOI: 10.13284/j.cnki.rddl.003705
The travel efficiency of public transportation is a key indicator for judging whether the quality of public transportation has developed compared with other modes of transportation, especially private vehicles. The quality of public transportation is also an important reference factor for residents' choices. With the rapid urban expansion and improvement in motorized travel levels, reducing the time difference between private vehicles and public transportation is the key to improving the attractiveness of public transportation. The relative spatiotemporal efficiency is based on the time difference between private vehicles and public transportation, considering the number of passengers. Recently, scholars have shown great interest in relative travel efficiency. However, relevant studies have shown poor real-time performance because of the unavailability of large datasets, which cannot dynamically reflect the characteristics of relative travel efficiency. The spread of big data and internet maps enables us to perform systematic efficiency evaluations. The internet map incorporates various travel-related information such as travel route, time, and cost under different travel modes based on real-time road conditions and provides access to the extracted embedded travel information. This study proposes a framework for evaluating the spatiotemporal efficiency of different travel modes based on real-time road conditions in Shenzhen. First, travel time data were obtained using an internet map during the morning, afternoon, and evening rush hours. The passenger flow volume was computed using smart card data. We then constructed an evaluation index model of spatiotemporal efficiency based on the relative time efficiency and weighted passenger flow volume. Finally, the results highlighted the following: 1) the relative time efficiency of public transportation was higher during the evening rush hours than in the morning. The main reason was the increase in private vehicle travel time during the evening rush hours, reflecting the complexity of urban road conditions during the evening; 2) the spatiotemporal efficiency index of central public transport stations fluctuated greatly during the three periods, which was closely related to the dynamics of traffic volume caused by the high concentration of workplaces; 3) the spatiotemporal efficiency index of public transportation stations exhibited spatial aggregation characteristics in the three periods, highlighting the different clustering characteristics in the central and outer areas; 4) the spatiotemporal efficiency index of subway stations was generally higher than that of bus stations, reflecting the importance of subway systems in urban transportation networks. Evaluating the relative travel efficiency of urban public transport contributes to analyzing the development status of public transportation, supporting decisions to achieve high-quality development of public transport, and providing travel information for the government and residents.
表1 深圳市站点对的公交出行相对时空效率指数(Eij )数据样例Table 1 Examples of public transportation relative spatiotemporal efficiency index(Eij ) for pairs of stations in Shenzhen |
起点(O) | 讫点(D) | Eijt | Pijt | 三时段Eij | |||||
---|---|---|---|---|---|---|---|---|---|
早高峰 | 午后 | 晚高峰 | 早高峰 | 午后 | 晚高峰 | ||||
五和 | 科技园 | 0.61 | 0.57 | 0.80 | 168 | 4 | 3 | 0.61 | |
科技园 | 五和 | 0.53 | 0.55 | 1.01 | 2 | 6 | 112 | 0.98 | |
龙华汽车站 | 科技园 | 0.87 | 0.79 | 0.83 | 80 | 4 | 2 | 0.87 | |
科技园 | 龙华汽车站 | 0.58 | 0.77 | 1.03 | 2 | 5 | 38 | 0.98 | |
西乡 | 科技园 | 0.87 | 0.86 | 0.92 | 51 | 1 | 0 | 0.87 | |
科技园 | 西乡 | 0.63 | 0.79 | 1.00 | 0 | 3 | 55 | 0.99 |
表2 深圳公交出行相对时空效率指数聚类中心及聚类个数Table 2 Clustering center of public transportation relative spatiotemporal efficiency index and the number of clusters in Shenzhen |
类别 | Ei 聚类中心 | 聚类数量/个 | ||
---|---|---|---|---|
早高峰 | 午后 | 晚高峰 | ||
类别1 | 0.58 | 0.66 | 0.62 | 87 |
类别2 | 0.56 | 0.65 | 0.70 | 112 |
类别3 | 0.47 | 0.51 | 0.64 | 180 |
类别4 | 0.55 | 0.50 | 0.58 | 121 |
表3 深圳公交出行相对时空效率指数全局空间自相关指数Table 3 Global spatial autocorrelation report of public transportation relative spatiotemporal efficiency index in Shenzhen |
时段 | Moran's I指数 | Z得分 | P值 | 空间分布模式 |
---|---|---|---|---|
3个时段综合 | 0.31 | 9.97 | 0.000 | 聚集模式 |
早高峰 | 0.58 | 18.94 | 0.000 | 聚集模式 |
午后 | 0.43 | 14.08 | 0.000 | 聚集模式 |
晚高峰 | 0.36 | 11.86 | 0.000 | 聚集模式 |
许彩薇:数据处理与分析、绘图制图分析、文章撰写与修改工作;
黄正东:整体方案设计,提出评估模型;
赵天鸿:协助数据采集和处理,提出修改意见;
张 莹:提供数据分析支持,提出修改意见;
黄嘉诚:提供绘图制图支持,提出修改意见。
蔡军. 2005. 居民出行效率与合理路网间距的确定. 城市交通,(3):58-63.
Cai Jun. 2005. Efficiency of the Traveler and Reasonable Distance between Roads. Urban Transport of China, (3): 58-63.
|
戴智,江捷,麦文隽,王小龙. 2020. 基于互联网地图的可达性量化评价方法. 城市轨道交通研究,23(12):28-32.
Dai Zhi, Jiang Jie, Mai Wenjun, and Wang Xiaolong. 2020. Accessibility Quantitative Evaluation Method Based on Internet Map. Urban Mass Transit, 23(12): 28-32.
|
董礼,曾俊伟,钱勇生,广晓平. 2018. 基于DEA模型的综合交通运输效率评价研究. 公路交通技术,34(1):112-116.
Dong Li, Zeng Junwei, Qian Yongsheng, and Guang Xiaoping. 2018. Research on Comprehensive Transportation Efficiency Evaluation Based on DEA Model. Technology of Highway and Transport, 34(1): 112-116.
|
Farber S, and Fu L W. 2017. Dynamic Public Transit Accessibility Using Travel Time Cubes: Comparing the Effects of Infrastructure (dis) Investments over Time. Computers Environment and Urban Systems, 62: 30-40.
|
Fitzova H, Matulova M, and Tomes Z. 2018. Determinants of Urban Public Transport Efficiency: Case Study of the Czech Republic. European Transport Research Review, 10(2): 1-11.
|
Gao Ge, Wang Zhen, Liu Xinmin, Li Qing, Wang Wei, and Zhang Junyou. 2019. Travel Behavior Analysis Using 2016 Qingdao's Household Traffic Surveys and Baidu Electric Map API Data. Journal of Advanced Transportation, 2019: 1-18.
|
郭琛琛,梁娟珠. 2022. 基于网络地图的多交通模式医疗设施可达性分析. 地球信息科学学报,24(3):483-494.
Guo Chenchen, and Liang Juanzhu. 2022. Accessibility Analysis of Medical Facilities Based on Multiple Transportation Modes of Network Map. Journal of Geo-Information Science, 24(3): 483-494.
|
韩会然,杨成凤,宋金平. 2017. 公共交通与私家车出行的通勤效率差异及影响因素——以北京都市区为例. 地理研究,36(2):253-266.
Han Huiran, Yang Chengfeng, and Song Jinping. 2017. Impact Factors and Differences in Commuting Efficiency between Public Transit and Private Automobile Travel: A Case Study on the Beijing Metropolitan Area. Geographical Research, 36(2): 253-266.
|
Huang Di, Yu Jun, Shen Shiyu, Li Zhekang, Zhao Luyun, and Gong Cheng. 2020. A Method for Bus OD Matrix Estimation Using Multisource Data. Journal of Advanced Transportation, 2020: 1-13.
|
揭远朋,冯雪松,解振全,刘异,朱晓静. 2018. 基于出行效率提升的公共交通线网优化研究. 武汉理工大学学报(交通科学与工程版),42(2):263-267,273.
Jie Yuanpeng, Feng Xuesong, Xie Zhenquan, Liu Yi, and Zhu Xiaojing. 2018. Optimization Research on Public Transit Network Based on Travel Efficiency Improvement. Journal of Wuhan University of Technology (Transportation Science & Engineering), 42(2): 263-267, 273.
|
李秋萍,刘慧敏,卓莉,陶海燕,栾学晨. 2020. 降雨天气下城市道路速度变化的差异及其影响因素.热带地理,40(4):744-751.
Li Qiuping, Liu Huimin, Zhuo Li, Tao Haiyan, and Luan Xuechen. 2020. Differences in Urban Road Speed Change and Their Influencing Factors during Rainfall.Tropical Geography, 40(4): 744-751.
|
Liao Yuan, Gil J, Pereira R H M, Yeh S, and Verendel V. 2020. Disparities in Travel Times between Car and Transit: Spatiotemporal Patterns in Cities.Scientific Reports, 10(1): 1-12.
|
Luo Xinggang, Liu Yingxin, Yu Yang, Tang Jiafu, and Li Wei. 2019. Dynamic Bus Dispatching Using Multiple Types of Real-Time Information. Transportmetrica B-Transport Dynamics, 7(1): 519-545.
|
Makarova I, Shubenkova K, and Pashkevich A. 2021. Efficiency Assessment of Measure to Increase Sustainability of the Transport System. Transport, 36(2): 123-133.
|
Niedzielski M A, Horner M W, and Xiao N C. 2013. Analyzing Scale Independence in Jobs-Housing and Commute Efficiency Metrics. Transportation Research Part A-Policy and Practice, 58: 129-143.
|
裴玉龙,潘恒彦,郭明鹏,张枭. 2020. 轨道交通对城市公共交通网络可达性的影响——以哈尔滨市为例. 公路交通科技,37(6):104-111.
Pei Yulong, Pan Hengyan, Guo Mingpeng, and Zhang Xiao. 2020. Influence of Rail Transit on Accessibility of Urban Transit Network: A Case Study of Harbin City. Journal of Highway and Transportation Research and Development, 37(6): 104-111.
|
Salonen M, and Toivonen T. 2013.Modelling Travel Time in Urban Networks: Comparable Measures for Private Car and Public Transport. Journal of Transport Geography, 31: 143-153.
|
深圳市交通运输局. 2022a. 2021年深圳交通运输行业统计数据解读. (2022-03-01)[2022-06-02]. http://jtys.sz.gov.cn/zwgk/sjfb/sjjd/content/post_9594511.html.
Transportation Bureau of Shenzhen Municipality. 2022a. Interpretation of Statistics of Transportation Industry in Shenzhen in 2021. (2022-03-01) [2022-06-02]. http://jtys.sz.gov.cn/zwgk/sjfb/sjjd/content/post_9594511.html.
|
深圳市交通运输局. 2022b. 深圳交通运输数据发布. [2022-06-02]. http://jtys.sz.gov.cn/zwgk/sjfb/index.html.
Transportation Bureau of Shenzhen Municipality.2022b.Shenzhen Transport Data Release [2022-06-02].http://jtys.sz.gov.cn/zwgk/sjfb/index.html.
|
Wang Jia, Yang Yanglingzhi, and Liu Shuai. 2018. Study of Traffic Characteristics Based on Internet Web Real-Time Traffic Conditions by Image Identification Technology. Imaging Science Journal, 66(3): 152-159.
|
王玉焕,陈旭梅,贾显超,龚辉波,张溪. 2014. 小汽车与公交车行程速度特性多维度对比分析.交通信息与安全,32(6):59-64.
Wang Yuhuan, Chen Xumei, Jia Xianchao, Gong Huibo, and Zhang Xi. 2014. A Multidimensional Comparative Analysis of Travel Speed Characteristics of Cars and Buses.Journal of Transport Information and Safety, 32(6): 59-64.
|
闻帅,黄正东. 2019. 基于公交大数据的满载率推算方法——以深圳市为例.测绘通报,(9):99-103.
Wen Shuai, and Huang Zhengdong. 2019. Bus Load Factor Estimation Based on Transit Big Data: A Case Study of Shenzhen. Bulletin of Surveying and Mapping, (9): 99-103.
|
杨励雅,邵春福,李霞.2011.城市居民出行方式选择的结构方程分析.北京交通大学学报,35(6):1-6.
Yang Liya, Shao Chunfu, and Li Xia.2011.Structural Equation Model Analysis of Travel Mode Choice for Urban Residents.Journal of Beijing Jiaotong University, 35(6): 1-6.
|
张红,徐珊,龚恩慧. 2021. 顾及实时路况的城市浪费性通勤测算.武汉大学学报(信息科学版),46(5):650-658.
Zhang Hong, Xu Shan, and Gong Enhui. 2021. Urban Wasteful Commuting Calculation Concerning Real-Time Traffic Information. Geomatics and Information Science of Wuhan University, 46(5): 650-658.
|
赵红军,尹伯成,沈国仙. 2008. 上海市民出行效率调查与分析.城市问题,(4):96-102.
Zhao Hongjun, Yin Bocheng, and Shen Guoxian.2008.Survey and Analysis to the Transportation Efficiency of Shanghai Residents. Urban Problems, (4): 96-102.
|
周雨阳,李芮智,潘利肖,陈艳艳.2020.北京南站公共交通可达性计算与评价.北京工业大学学报,46(12):1365-1376.
Zhou Yuyang, Li Ruizhi, Pan Lixiao, and Chen Yanyan.2020.Public Transit Accessibility Calculation and Evaluation of the Beijing South Railway Station.Journal of Beijing University of Technology, 46(12): 1365-1376.
|
/
〈 |
|
〉 |