机场服务质量对航空出行选择行为的影响——以粤港澳大湾区为例
廖望(1991—),女,江西赣州人,讲师,博士,研究方向为交通与土地利用,(E-mail)livialiao@163.com; |
收稿日期: 2023-04-04
修回日期: 2023-06-30
网络出版日期: 2024-02-08
基金资助
江西理工大学博士科研基金(205200100590)
江西省教育厅青年项目(JJ22224)
江西省教育厅科技项目(204201400890)
The Influence of Airport Service Quality on Air Travel Choices: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area
Received date: 2023-04-04
Revised date: 2023-06-30
Online published: 2024-02-08
文章立足于旅客心理感知,基于随机效用理论,运用SEM-Logit模型方法,探讨机场服务质量的关键维度对粤港澳大湾区航空出行选择行为的影响。结果表明:1)航空出行选择行为并不是对行为意向的简单线性扩展,作为机场服务质量的2个关键维度,强制性流程服务是旅客在机场无可避免且耗费时间最长和最为繁琐的流程,在该过程中的优质服务水平和质量对旅客存在无形吸引力,特别对商务出行旅客在机场-航空公司方案的比选中存在显著影响;2)设施设备和环境虽然不是旅客普遍性考虑因素,但旅客对其感知差异明显表现在机场群内不同机场类型之间;3)预计起飞时间差异、机型、准点率、航班班次、航班价格等其他因素均存在显著影响,且抵达机场时间、航班飞行时间等时间成本是核心影响因素;4)旅客对航空公司类型并不存在明显偏好,但低成本航空公司的入驻对区域机场竞争存在明显的抗风险能力。
廖望 , 曹小曙 , 李涛 , 高兴川 . 机场服务质量对航空出行选择行为的影响——以粤港澳大湾区为例[J]. 热带地理, 2024 , 44(2) : 195 -211 . DOI: 10.13284/j.cnki.rddl.003819
High-quality air service is important for achieving high-quality aviation development. As the primary customers of air travel services, passengers are the most important evaluators of the service. Therefore, research on their air travel choices is key for promoting the coordination of multi-airport regions. Based on stochastic utility psychological perception theories, this study discusses the impact of the key dimension of airport service quality on air travel choices using the structural equation model-logit model. The results show that air travel choice is not a simple linear extension of behavioral intentions as there are two key dimensions of airport service quality: First, mandatory service processing is inevitably the most time-consuming and tedious process for passengers at airports. This waiting time is perceived as a sign of low airport service capability, whereas the level and quality of service provided by staff in this process is an intangible factor for passengers. This in turn affects the level of passengers' ratings of airport services, especially for business travelers. Therefore, airports need to recognize the time and resource constraints of passengers and work with airlines to streamline the check-in process, ensure security control, and reduce waiting time. One solution is to use shared self-service devices or automated robots that allow any passenger of any airline or flight to check-in and check-out on the same device. Second, while facilities, equipment, and environment are not universal considerations for passengers, differences in passenger perceptions are evident between airport types. Within multi-airport regions, the facilities, equipment, and environment of major airports are above passengers' psychological expectations, while auxiliary or other airports need to pay more attention to this service, which illustrates that the improvement of airport service quality requires changes to unidimensional and monolithic thinking but also focus on passengers' overall perception of service experience from a multidimensional perspective, as well as consideration of the spatial and temporal characteristics of different airport types in the multi-airport region to make targeted improvements. Moreover, passengers do not have an obvious preference for particular airlines, but low-cost airlines still hold a certain appeal for passengers when they take off from regional airports, which also means that low-cost airlines ' entry into the market has anti-risk properties for regional airports. Within the limits of China's aviation controls, the presence of low-cost carriers can still improve the chances of an airport being chosen. Therefore, different airport types within the same multi-airport region often need to compete differently to achieve regional synergistic development. To enhance airport service quality, it is essential to fine tune service quality standards, based on airport's types. The improvement of airports' performance should include a phased integration of assessments of service experience settings. Airports should adopt differentiated spatial designs for their service functions based on the goal of airport integration, with a view to achieving optimal management at minimal cost while being able to effectively guide passengers in their air travel choices.
表1 航空出行变量定义及数据来源Table 1 Definition and data Source of air travel variables |
变量类型 | 变量 | 符号 | 定义 | 数据来源 |
---|---|---|---|---|
因变量 | 机场-航空公司 选择行为 | aicj | 旅客对首选机场( )、替代机场( )和传统航空公司( )、低成本航空公司( ) 进行组合选择的结果 | RP-SP 融合调查 |
个体 属性 变量 | 性别 | gender | 1. 男性;2. 女性 | RP调查 |
年龄/岁 | age | 1. <18;2. 18~24;3. 25~34;4. 35~44;5. 45~54;6. 55~64;6. ≥65 | ||
月收入/元 | income | 1. ≤3 000;2. 3 001~6 000;3. 6 001~9 000;4. 9 001~15 000;5. 15 001~30 000; 6. ≥30 000 | ||
本地居民 | resd | 1.是;2.否 | ||
飞行频次/(次·a-1) | flts | 1. 1~2;2. 3~6;3. ≥7 | ||
出行目的 | purp | 1. 商务出行;2. 非商务出行 | ||
提前2 h抵达机场 | parv | 1. 是;2. 否 | ||
机场服务 质量潜变量 | 强制性服务流程 | PD | 旅客对机场值机、安检、登机等一系列不可避免的严密服务流程的感知评价结果。 | |
设施设备和环境 | FE | 旅客对候机楼的卫生间、休息室、行李手推车、货币兑换机器等系列设施设备和环境所进行的感知评价结果。 | ||
出行 方案 变量 | 抵达机场的时间 | acst | 从出发地抵达机场所耗费的车程时间。 | RP-SP 融合调查 |
航班价格 | fare | 旅客所搭乘航班的票价。 | ||
航班飞行时间 | flyt | 航班飞行时间和可能存在的中转时间长度。 | ||
预计起飞 时间差异 | sde | 和购买机票时理想中航班起飞时间相比的提前起飞时间差。 | ||
sdl | 和购买机票时理想中航班起飞时间相比的延迟起飞时间差。 | |||
航班准点率 | otp | 航班准时起飞的概率。 | ||
航班班次 | freq | 某一机场-航空公司对应抵达旅客目的地城市的平均每天的航班班次。 | ||
航班机型 | acft | 旅客所搭乘的航班采用的飞机类型。结合携程网信息提取,仅分为中型或大型, 并不包括小型飞机。 |
表2 SP调查方案属性水平设计Table 2 The experimental design of SP survey |
属性名称 | 单位 | 基准值来源 | 属性水平 |
---|---|---|---|
机场类型 | - | RP调查 | 首选机场、替代机场 |
航空公司类型 | - | RP调查 | 传统航空、低成本航空 |
预计起飞时间差异 | h | RP调查 | -3、-1、1、3 |
航班飞行时间 | min | RP调查 | 90%、100%、110%、120% |
航班价格 | 元(人民币) | RP调查 | 60%、80%、100%、120% |
航班机型 | - | 携程网数据挖掘 | 大型、中型 |
航班准点率 | - | 携程网数据挖掘 | 100%、85%、70%、55% |
航班班次 | 班次/d | 携程网数据挖掘 | 1、5、9、13 |
表3 调查对象社会经济属性总体结构分析Table 3 Analysis of the overall structure of socio-economic attributes of survey respondents |
个体属性 | 类别 | 频数/人 | 占比/% |
---|---|---|---|
性别 | 男性 | 767 | 53.60 |
女性 | 664 | 46.40 | |
年龄/岁 | ≤18 | 52 | 3.63 |
19~24 | 266 | 18.59 | |
25~34 | 443 | 30.96 | |
35~44 | 427 | 29.84 | |
45~54 | 236 | 16.49 | |
55~64 | 5 | 0.35 | |
≥65 | 2 | 0.14 | |
月收入/元 | ≤3 000 | 114 | 7.97 |
3 001~6 000 | 160 | 11.18 | |
6 001~9 000 | 237 | 16.56 | |
9 001~15 000 | 399 | 27.88 | |
15 001~30 000 | 343 | 23.97 | |
≥30 001 | 178 | 12.44 | |
本地居民 | 否 | 712 | 49.76 |
是 | 719 | 50.24 | |
飞行频次/次 | 1~2 | 348 | 24.32 |
3~6 | 689 | 48.15 | |
≥7 | 394 | 27.53 | |
出行目的 | 非商务 | 805 | 56.25 |
商务 | 626 | 43.75 | |
提前2 h抵达机场 | 否 | 627 | 43.82 |
是 | 804 | 56.18 |
图5 旅客选择机场的原因及其比例分布Fig.5 The reasons for passengers choosing airports and their proportional distribution |
表4 粤港澳大湾区各机场强制性流程MIMIC模型结果Table 4 Estimated results of the mandatory process variable for each airport in the GBA |
路径 | 标准化路径系数(|t值|) | ||||||
---|---|---|---|---|---|---|---|
香港 | 广州 | 深圳 | 澳门 | 珠海 | 惠州 | 佛山 | |
PD←gender | -0.219(1.467) | -0.112**(2.056) | -0.021(0.348) | -0.14(0.927) | -0.324**(2.201) | -0.529**(2.364) | -0.418***(2.677) |
PD←age | 0.261(1.635) | 0.035(0.566) | -0.107*(1.652) | -0.114(0.688) | -0.150(1.058) | 0.176(1.429) | 0.053(0.739) |
PD←income | -0.782***(2.715) | -0.017(0.254) | 0.087(1.120) | -0.249(1.077) | 0.230(1.428) | -0.192(1.449) | 0.342(0.164) |
PD←flts | 0.066*(1.681) | 0.081*(1.683) | 0.025(0.402) | 0.461***(3.575) | 0.466***(2.688) | 0.842**(2.454) | 0.846***(2.386) |
PD←resd | -0.106(0.654) | -0.010**(2.021) | -0.144*(1.656) | -0.017*(1.829) | -0.021*(1.710) | -0.002**(2.015) | -0.007**(2.030) |
PD←parv | 0.564***(2.581) | 0.894***(11.317) | 0.816***(8.756) | 0.266*(1.856) | 0.415***(2.611) | 0.525**(2.343) | 0.134**(1.939) |
PD←purp | -0.279(1.636) | -0.143*(1.779) | -0.277***(4.314) | 0.625(1.625) | 0.516(1.390) | 0.053(0.456) | -0.073(1.213) |
PD1←PD | 0.309 | 0.553 | 0.554 | 0.259 | 0.387 | 0.378 | 0.061 |
PD2←PD | 0.409**(2.451) | 0.527***(8.547) | 0.545***(6.391) | 0.307**(3.044) | 0.278**(2.133) | 0.277*(1.688) | 0.184*(1.728) |
PD3←PD | 0.317***(2.978) | 0.504***(11.081) | 0.476***(7.514) | 0.489*(1.922) | 0.421***(3.608) | 0.500***(2.931) | 0.193***(2.664) |
PD4←PD | 0.443***(3.243) | 0.464***(8.095) | 0.418***(5.960) | 0.416**(2.482) | 0.272**(2.097) | 0.214(1.221) | 0.105**(2.393) |
PD5←PD | 0.464**(2.574) | 0.495***(7.557) | 0.514***(6.370) | 0.110(0.657) | 0.399***(2.701) | 0.549**(2.194) | 0.323***(2.558) |
PD6←PD | 0.293**(2.076) | 0.582***(8.503) | 0.544***(6.382) | 0.151*(1.802) | 0.282**(2.155) | 0.408*(1.906) | 0.300**(2.303) |
PD7←PD | 0.258***(2.847) | 0.572***(10.460) | 0.569***(8.988) | 0.490**(2.050) | 0.319**(2.347) | 0.525**(2.154) | 0.163***(3.097) |
PD8←PD | 0.418**(2.474) | 0.375***(7.368) | 0.474***(6.626) | 0.143(0.816) | 0.339***(2.918) | 0.695***(2.643) | 0.455**(2.056) |
PD9←PD | 0.326**(2.446) | 0.396***(7.606) | 0.464***(6.811) | 0.274**(2.250) | 0.391***(2.671) | 0.113(0.695) | 0.102**(2.216) |
PD10←PD | 0.226**(2.435) | 0.331***(5.895) | 0.378***(4.780) | 0.214*(1.829) | 0.289**(2.193) | 0.193*(1.912) | 0.257**(2.332) |
CMIN/DF | 1.245 | 1.738 | 1.196 | 1.221 | 1.029 | 1.060 | 1.560 |
RMR | 0.051 | 0.020 | 0.025 | 0.055 | 0.041 | 0.046 | 0.053 |
GFI | 0.912 | 0.956 | 0.946 | 0.901 | 0.903 | 0.913 | 0.910 |
AGFI | 0.807 | 0.905 | 0.893 | 0.815 | 0.825 | 0.847 | 0.837 |
RSMR | 0.031 | 0.049 | 0.038 | 0.079 | 0.019 | 0.039 | 0.080 |
|
表5 不同出行目的下收入交互项几率比估算结果Table 5 Estimated results of the income interaction terms for the business and non-business |
变量 | 商务 | 非商务 | |||
---|---|---|---|---|---|
无交互项(|t值) | 含交互项(|t值|) | 无交互项(|t值|) | 含交互项(|t值|) | ||
duma1c1 | 4.347***(6.38) | 4.126***(6.07) | 1.653***(3.05) | 2.536***(4.72) | |
duma1c2 | 7.706***(9.89) | 7.548***(9.59) | 3.256***(8.61) | 4.751***(10.06) | |
duma2c1 | 0.612*(1.82) | 0.613*(1.77) | 0.768(1.32) | 0.644*(1.92) | |
sde | 0.737***(2.85) | 0.724(1.15) | 0.776***(3.07) | 0.749(1.18) | |
sdl | 0.675***(3.71) | 0.613*(1.81) | 0.673***(4.75) | 0.671*(1.65) | |
acft | 1.190(1.49) | 1.865*(1.79) | 1.238**(2.48) | 1.446(1.20) | |
otp | 1.033***(4.12) | 1.049**(2.54) | 1.022***(3.66) | 1.045***(2.71) | |
freq | 1.01(0.50) | 0.963(0.77) | 1.069***(4.09) | 1.056(1.29) | |
acst | 0.914***(17.54) | 0.906***(7.64) | 0.949***(19.78) | 0.939***(7.07) | |
flyt | 0.972***(7.28) | 0.976***(2.63) | 0.974***(8.80) | 0.963***(3.93) | |
fare | 0.994***(11.26) | 0.994***(4.61) | 0.991***(18.64) | 0.999(0.83) | |
PD | 1.333**(2.16) | 0.946(0.19) | 1.193(1.36) | 0.936(0.25) | |
FE | 1.012(0.06) | 1.161(0.68) | 1.15(0.70) | 1.121(0.52) | |
sde* income | — | 1.008(0.07) | — | 0.996(0.05) | |
sdl* income | — | 1.038(0.33) | — | 0.988(0.12) | |
acft* income | — | 0.821(1.32) | — | 0.914(0.72) | |
otp* income | — | 0.993(0.93) | — | 0.995(0.83) | |
freq* income | — | 1.021(1.05) | — | 1.000(0) | |
acst* income | — | 1.004(0.81) | — | 0.999(0.19) | |
flyt* income | — | 0.997(0.59) | — | 1.005(1.08) | |
fare* income | — | 1.000(0.08) | — | 0.995***(7.60) | |
PD* income | — | 1.151(1.21) | — | 1.119(1.16) |
表6 粤港澳大湾区各机场设施设备和环境MIMIC模型结果Table 6 Estimated results of the facility equipment and environment variable for each airport in the GBA |
路径 | 标准化路径系数(|t值|) | ||||||
---|---|---|---|---|---|---|---|
香港 | 广州 | 深圳 | 澳门 | 珠海 | 惠州 | 佛山 | |
FE←gender | 0.077(0.590) | 0.185**(2.025) | 0.341**(2.972) | -0.236(1.102) | -0.412**(2.432) | -0.262(1.401) | -0.223*(1.726) |
FE←age | -0.321**(2.016) | -0.019(0.183) | 0.053(0.495) | 0.306(1.188) | 0.086(0.508) | 0.198(1.054) | 0.869(1.120) |
FE←income | -0.444**(2.256) | -0.054(0.496) | 0.143(1.103) | -0.414*(1.907) | 0.601(1.119) | -0.419*(1.722) | 0.159(1.258) |
FE←resd | 0.206(1.300) | 0.110(1.260) | 0.121(1.173) | 0.661**(2.119) | 0.479***(2.621) | 0.041(0.231) | 0.256*(1.910) |
FE←flts | -0.383**(2.062) | -0.106(1.147) | -0.249**(2.105) | 0.754(1.585) | 0.144(0.778) | -0.191(0.988) | -0.569***(3.532) |
FE←parv | 0.547***(2.777) | 0.939***(6.784) | 0.860***(4.729) | 0.369**(2.060) | 0.176***(2.857) | 0.599***(2.801) | -0.306*(2.283) |
FE←purp | 0.467**(2.452) | 0.059(0.646) | 0.303**(2.740) | 0.614*(1.947) | 0.084(0.528) | -0.262(0.429) | 0.190*(1.623) |
FE1←FE | 0.340 | 0.378 | 0.341 | 0.357 | 0.451 | 0.433 | 0.659 |
FE2←FE | 0.413***(3.729) | 0.361***(7.324) | 0.384***(5.088) | 0.439***(2.764) | 0.198*(1.680) | 0.435**(2.153) | 0.242*(1.846) |
FE3←FE | 0.451***(3.398) | 0.371***(5.342) | 0.332***(3.473) | 0.330*(1.651) | 0.178*(1.684) | 0.489**(2.306) | 0.039**(1.962) |
FE4←FE | 0.373**(2.510) | 0.344***(4.764) | 0.299***(3.484) | 0.185**(2.082) | 0.168**(2.626) | 0.316**(2.555) | 0.258**(2.434) |
FE5←FE | 0.283**(2.136) | 0.334***(6.295) | 0.374***(4.444) | 0.468**(1.983) | 0.183**(2.468) | 0.415**(2.091) | 0.211*(1.737) |
FE6←FE | 0.383**(2.543) | 0.440***(8.078) | 0.488***(5.580) | 0.024(0.151) | 0.064***(3.573) | 0.254*(1.770) | 0.655***(2.947) |
FE7←FE | 0.445***(2.729) | 0.270***(4.034) | 0.339***(3.516) | 0.497**(2.035) | 0.140**(2.220) | 0.239(1.384) | 0.239*(1.799) |
FE8←FE | 0.421***(2.663) | 0.389***(5.985) | 0.389***(4.154) | 0.146(0.883) | 0.169*(1.666) | 0.475**(2.268) | -0.167(0.879) |
CMIN/DF | 1.691 | 1.871 | 1.589 | 1.117 | 1.337 | 1.622 | 1.176 |
RMR | 0.034 | 0.024 | 0.02 | 0.059 | 0.051 | 0.04 | 0.036 |
GFI | 0.925 | 0.962 | 0.964 | 0.925 | 0.913 | 0.928 | 0.919 |
AGFI | 0.837 | 0.915 | 0.91 | 0.826 | 0.819 | 0.854 | 0.826 |
RSMR | 0.017 | 0.051 | 0.026 | 0.053 | 0.015 | 0.044 | 0.035 |
1 数据来源:FlightGlobal. https://www.flightglobal.com/。
廖 望:主要负责论文撰写及数据分析;
曹小曙:主要参与概念模型和结果分析;
李 涛:主要负责研究框架设计;
高兴川:主要参与研究综述撰写。
Alkheder S. 2021. Passengers Intentions Towards Self-Services Check-in, Kuwait Airport as a Case Study. Technological Forecasting and Social Change, 169: 120864.
|
Armitage S, Rodwell D, and Lewis I. 2022. Applying an Extended Theory of Planned Behaviour to Understand Influences on Safe Driving Intentions and Behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 90: 347-364.
|
澳门特别行政区统计暨普查局. 2022. 澳门统计年鉴. 澳门:华辉印刷有限公司.
Government of Macao Special Administrative Region Statistics and Census Service. 2022. Statistical Yearbook of Macao. Macao: Welfare Printing Ltd.
|
Barakat H, Yeniterzi R, and Martín-Domingo L. 2021. Applying Deep Learning Models to Twitter Data to Detect Airport Service Quality. Journal of Air Transport Management, 91: 102003.
|
Bergantino A S, Capurso M, and Hess S. 2020. Modelling Regional Accessibility to Airports Using Discrete Choice Models: An Application to a System of Regional Airports. Transportation Research Part A: Policy and Practice, 132: 855-871.
|
Bezerra G C L and Gomes C F. 2020. Antecedents and Consequences of Passenger Satisfaction with the Airport. Journal of Air Transport Management, 83: 101766.
|
Bonnefoy P A. 2008. Scalability of the Air Transportation System and Development of Multi-Airport Systems: A Worldwide Perspective. Boston: Massachusetts Institute of Technology.
|
柴彦威,李彦熙,李春江. 2022. 时空间行为规划:核心问题与规划手段. 城市规划,46(12):7-15.
Chai Yanwei, Li Yanxi, and Li Chunjiang. 2022. Spatiotemporal and Behavioral Planning: Key Issue and Planning Strategies. City Planning Review, 46(12): 7-15.
|
曹小曙,廖望. 2018. 全球多机场区域空间格局与类型划分. 地理科学进展,37(11):1473-1484.
Cao Xiaoshu and Liao Wang. 2018. Spatial Pattern and Classification of the Worldwide Multi-Airport Regions. Progress in Geography, 37(11): 1473-1484.
|
Cheung T K, Wong W, Zhang A, and Wu Y. 2020. Spatial Panel Model for Examining Airport Relationships within Multi-airport Regions. Transportation Research Part A: Policy and Practice, 133: 148-163.
|
狄智玮,包丹文,张天炫,朱婷. 2019. 基于Agent理论的机场旅客出发时间与出行方式联合选择模型研究. 交通信息与安全,37(4):136-144.
Di Zhiwei, Bao Danwen, Zhang Tianxuan, and Zhu Ting. 2019. A Joint Selection Model of Departure Time and Travel Mode of Airport Passengers Based on Agent Theory. Journal of Transport Information and Safety, 37(4): 136-144.
|
封丹,朱竑,Breitung Werner. 2019. 基于居民感知的跨界意义研究——以深港跨界居民为例. 人文地理,34(3):53-60.
Feng Dan, Zhu Hong, and Breitung Werner. 2019. The Interactions Between Cross-border Mobility, Sense of Place and Border Perceptions: A Case of Hong Kong and Shenzhen Border Crossers. Human Geography, 34(3): 53-60.
|
Furuichi M and Koppelman F. 1994. An Analysis of Air Travelers' Departure Airport and Destination Choice Behavior. Transportation Research Part A: Policy and Practice, 3(28): 187-195.
|
国家统计局. 2022. 中国统计年鉴. 北京:中国统计出版社.
National Bureau of Statistics. 2022. China Statistical Yearbook. Beijing: China Statistics Press.
|
Halpern N and Mwesiumo D. 2021. Airport Service Quality and Passenger Satisfaction: The Impact of Service Failure on the Likelihood of Promoting an Airport Online. Research in Transportation Business & Management, 41: 100667.
|
韩震,朱园坤,徐萌. 2021. 考虑潜变量的高铁民航旅客出行行为仿真. 系统管理学报,30(5):1016-1023.
Han Zhen, Zhu Yuankun, and Xu Meng. 2021. Simulation of High-Speed Rail and Civil Aviation Passenger Travel Behavior Considering Latent Variables. Journal of Systems & Management, 30(5): 1016-1023..
|
黄沣爵,杨滔. 2022. 珠三角城市空间联系及社会网络——基于“流空间”的分析. 热带地理,42(3):422-430.
Huang Fengjue and Yang Tao. 2022. Exploring the Spatial Structure of Pearl River Delta: Based on "Space of Flows". Tropical Geography, 42 (3): 422-430.
|
Harvey G. 1987. Airport Choice in a Multiple Airport Region. Transportation Research Part A: Policy and Practice, 21(6): 439-449.
|
Hess S, Adler T, and Polak J W. 2007. Modelling Airport and Airline Choice Behaviour with the Use of Stated Preference Survey Data. Transportation Research Part E: Logistics and Transportation Review, 43(3): 221-233.
|
Ishii J, Jun S, and Van-Dender K. 2009. Air travel choices in multi-airport markets. Journal of Urban Economics, 65(2): 216-227.
|
江红,周夕钰. 2017. 基于结构方程模型的民航旅客出行行为特征影响因素分析——以天津机场出港旅客为例. 综合运输,39(3):47-52.
Jiang Hong and Zhou Xiyu. 2017. Impact Factors Analysis of Passengers' Travel Behavior Using Structural Equation Model: Based on Tianjin Binhai International Airport. China Transportation Review, 39(3): 47-52.
|
Jung S and Yoo K. 2016. A Study on Passengers' Airport Choice Behavior Using Hybrid Choice Model: A Case Study of Seoul Metropolitan Area, South Korea. Journal of Air Transport Management, 57: 70-79.
|
Kim J and Lee B. 2023. Campus Commute Mode Choice in a College Town: An Application of the Integrated Choice and Latent Variable (ICLV) Model. Travel Behaviour and Society, 30: 249-261.
|
赖文凤,陈菲. 2019. 港珠澳大桥影响下粤港澳大湾区经济空间新变化. 城市观察,(1):40-48.
Lai Wenfeng, and Chen Fei. 2019. Changes in the Economic Space of the Guangdong-Hong Kong-Macao Bay Area Under the Influence of the Hong Kong-Zhuhai-Macao Bridge. Urban Insight, (1): 40-48.
|
李艳,孙阳,姚士谋. 2020. 一国两制背景下跨境口岸与中国全球城市区域空间联系——以粤港澳大湾区为例. 地理研究,39(9):2109-2129.
Li Yan, Sun Yang, and Yao Shimou. 2020. Cross-Border Ports and the Spatial Linkages of China′s Global City Regions in the Context of "One Country, Two Systems": Taking the Guangdong-Hong Kong-Macao Greater Bay Area as an Example. Geographical Research, 39(9): 2109-2129.
|
廖望,曹小曙,林雄斌,马仁锋. 2021. 旅客机场选择行为意向的形成机制——以粤港澳大湾区为例. 地理科学,41(12):2107-2116.
Liao Wang, Cao Xiaoshu, LinXiongbin, and Ma Renfeng. 2021. Investigating Passengers' Behavioral Intention of Reusing an Airport: The Case of Guangdong-Hong Kong-Macao Greater Bay Area. Scientia Geograph-ica Sinica, 41(12): 2107-2116.
|
Loo B P. 2008. Passengers' Airport Choice within Multi-Airport Regions (MARs): Some Insights from a Stated Preference Survey at Hong Kong International Airport. Journal of Transport Geography, 2(16): 117-125.
|
Lu J, Meng Y, Timmermans H, and Zhang A. 2021. Modeling Hesitancy in Airport Choice: A Comparison of Discrete Choice and Machine Learning Methods. Transportation Research Part A: Policy and Practice, 147: 230-250.
|
马向明,陈洋,黎智枫. 2019. 粤港澳大湾区城市群规划的历史、特征与展望. 城市规划学刊,(6):15-24.
Ma Xiangming, Chen Yang, and Li Zhifeng. 2019. The History, Characteristics and Prospects of Regional Urban Cluster Planning in the Guangdong-Hong Kong-Macao Greater Bay Region. Urban Planning Forum, (6): 15-24.
|
Marcucci E and Gatta V. 2012. Dissecting Preference Heterogeneity in Consumer Stated Choices. Transportation Research Part E: Logistics and Transportation Review, 48(1): 331-339.
|
莫辉辉,王姣娥,高超,王涵. 2021. 机场群研究进展与展望. 地理科学进展,40(10):1761-1770.
Mo Huihui, Wang Jiao'e, Gao Chao, and Wang Han. 2021. Airport Agglomeration Research: A Review and Prospect. Progress in Geography, 40(10): 1761-1770.
|
Skinner R E. 1976. Airport Choice: An Empirical study. Journal of Transportation Engineering, 4(102): 871-882.
|
Soto J, Orozco-Fontalvo M, and Useche S A. 2022. Public Transportation and Fear of Crime at BRT Systems: Approaching to the Case of Barranquilla (Colombia) Through Integrated Choice and Latent Variable Models. Transportation Research Part A: Policy and Practice, 155: 142-160.
|
Sun S and Duan Z. 2019. Modeling Passengers' Loyalty to Public Transit in a Two-Dimensional Framework: A Case Study in Xiamen, China. Transportation Research Part A: Policy and Practice, 124: 295-309.
|
Suzuki Y, Crum M R, and Audino M J. 2003. Airport Choice, Leakage, and Experience in Single-Airport Regions. Journal of Transportation Engineering, 129(2): 212-218.
|
Takebayashi M. 2021. Workability of a Multiple-Gateway Airport System with a High-Speed Rail Network. Transport Policy, 107: 61-71.
|
Tam M L, Lam W H K, and Lo H P. 2010. Incorporating Passenger Perceived Service Quality in Airport Ground Access Mode Choice Model. Transportmetrica, 6(1): 3-17.
|
汪菲,罗皓,王长建,叶玉瑶,张虹鸥,林晓洁,陈静. 2023. 金融联系视角下粤港澳大湾区城市网络空间结构及其影响因素. 热带地理,43(4):581-595.
Wang Fei, Luo Hao, Wang Changjian, Ye Yuyao, Zhang Hong'ou, Lin Xiaojie, and Chen Jing. 2023. Spatial Structure and Influencing Factors of Urban Network in the Guangdong-Hong Kong-Macao Greater Bay Area from the Financial Relationships Perspective. Tropical Geography, 43(4): 581-595.
|
Windle R and Dresner M. 1995. Airport Choice in Multiple-airport Regions. Journal of Transportation Engineering, 4(121): 332-337.
|
吴威,曹有挥,梁双波,张璐璐,刘玮辰. 2019. 民用机场区域服务能力的结构与空间格局——以长江经济带民用机场体系为例. 地理研究,38(6):1512-1526.
Wu Wei, Cao Youhui, Liang Shuangbo, Zhang Lulu, and Liu Weichen. 2019. Regional Service Capability Structure and Spatial Pattern of Civil Airports: A Case Study of Yangtze River Economic Belt. Geographical Research, 38(6): 1512-1526.
|
香港特别行政区政府统计处. 2022. 香港统计年刊. (2022-10-28)[2023-12-31]. [Census and Statistics Department Hong Kong Special Administrative Region. 2022. Hong Kong Annual Digest of Statistics. (2022-10-28) [2023-12-31]. https://www.censtatd.gov.hk/en/data/stat_report/product/B1010003/att/B10100032022AN22B0100.pdf.
|
萧文龙. 2013. 统计分析SPSS中文版+PLS-SEM(SmartPLS). 台北:碁峰资讯.
Xiao Wenlong. 2013. Introduction and Application of Statistical Analysis: Chinese Version of SPSS+PLS-SEM (SmartPLS). Taibei: Gotop Information Inc.
|
徐爱庆,陈欣,朱金福. 2018. 基于累积前景理论的机场群旅客出行决策行为分析. 交通运输系统工程与信息,18(6):14-21.
Xu Aiqing, Chen Xin, and Zhu Jinfu. 2018. Passenger Travel Choice in Multiple Airport System Based on Cumulative Prospect Theory. Journal of Transportation Systems Engineering and Information Technology, 18(6): 14-21.
|
姚海芳,冯天楠,刘劲松. 2020. 基于手机信令数据的机场航空旅客分类识别研究——以石家庄正定国际机场为例. 地理与地理信息科学,36(3):56-62.
Yao Haifang, Feng Tiannan, and Liu Jinson. 2020. Air Passenger Classification Based on Mobile Phone Signaling Data: A Case Study of the Shijiazhuang Zhengding International Airport. Geography and Geo-Information Science, 36(3): 56-62.
|
张生润,郑海龙,李涛,唐小卫,王姣娥. 2019. 枢纽机场的国际中转客流拥堵溢出效应研究. 地理研究,38(11):2716-2729.
Zhang Shengrun, Zheng Hailong, Li Tao, Tang Xiaowei, and Wang Jiao'e. 2019. Research on Congestion Spillover Effects of International Transfer Traffic on Hub Airports. Geographical Research, 38(11): 2716-2729.
|
赵桂红,崔悦,冯迪,李建伏. 2020. 我国航空旅客对附加服务选择行为及实证研究. 系统工程,38(2):149-158.
Zhao Guihong, Cui Yue, Feng Di, and Li Jianfu. 2020. Choice Behavior of Ancillary Services for Chinese Air Passengers and Empirical Study. Systems Engineering, 38(2): 149-158.
|
中共中央,国务院. 2021. 国家综合立体交通网规划纲要. (2021-02-24)[2023-12-31]. [Central Committee of the Communist Party of China (CPC) and State Council (PRC). 2021. Outline of National Comprehensive Three-Dimensional Transportation Network Planning. (2019-02-18) [2023-11-25]. https://www.gov.cn/gongbao/content/2021/content_5593440.htm.
|
中国民航局. 2020. 民航局关于支持粤港澳大湾区民航协同发展的实施意见. (2020-07-16)[2023-12-31]. [Civil Aviation Administration of China. 2020. Implementation Opinions of CAAC on Supporting the Coordinated Development of Civil Aviation in Guangdong-Hong Kong-Macao Greater-Bay Area. (2020-07-16) [2023-12-31]. https://www.gov.cn/xinwen/2020-07/16/content_5527258.htm.
|
中华人民共和国国家发展和改革委员会. 2022. “十四五”现代综合交通运输体系发展规划. (2022-03-25)[2023-12-31]. [National Development and Reform Commission. 2022. Development Planning of Modern Comprehensive Transportation System in the Tenth Five-Year Plan. (2022-03-25) [2023-11-25]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/202203/t20220325_1320208.html.
|
周悦,江欣国,付川云,刘海玥. 2021. 基于混合Logit模型的出租车超速者运营因素分析. 交通运输系统工程与信息,21(3): 229-236.
Zhou Yue, Jiang Xinguo, Fu Chuanyun, and Liu Haiyue. 2021. Operational Factors Analysis for Taxi Speeders Using Mixed Logit Model. Geography and Geo-Information Science, 21(3): 229-236.
|
/
〈 |
|
〉 |