广东省公务员考试被录取应届生的梯次迁移模式及影响机制
吴景豪(1999—),男,湖北鄂州人,硕士研究生,研究方向为人口地理,(E-mail)wujh66@mail2.sysu.edu.cn; |
收稿日期: 2024-10-06
修回日期: 2024-10-30
网络出版日期: 2025-03-05
基金资助
国家自然科学基金项目(42171196)
Urban Hierarchy Migration Model and Impact Mechanism of Graduates Admitted to the Guangdong Provincial Civil Service Examination
Received date: 2024-10-06
Revised date: 2024-10-30
Online published: 2025-03-05
在中国进入知识经济时代的关键转型期,公务员队伍作为国家治理体系和治理能力现代化的重要组成部分,其学历结构和空间分布的优化对于提升政府效能和推动社会进步具有深远影响。文章基于2023年广东省公务员考试的招录数据,使用空间统计方法与多元Logistic回归分析方法,分析公务员考试被录取应届生的梯次迁移模式及其影响因素。结果显示:1)被录取应届生的迁移模式以逆向梯次迁移为主。非同级迁移的目的地以四线、三线、一线城市为主;同级迁移目的地以四线、三线、二线城市为主。2)个人属性(包括性别、毕业学校等级和来源城市等级)中,除四、五线城市高校应届生外,其他属性应届生均以逆向梯次迁移为主。3)岗位条件(即单位等级)和岗位要求(包括学历和基层工作经验等方面的要求)中,各组别被录取者均以逆向梯次迁移为主。4)个人属性、岗位条件和岗位要求共同影响被录取者迁移模式的选择,其中个人属性和岗位要求影响相对显著。5)公务员考试被录取应届生迁移模式选择机制背后是多重因素的互动,有客观与主观的权衡。这一编制类就业模式相较于其他非编制类就业有更强的逆向梯次迁移可能性,其原因可能是岗位设置、竞争强度以及主观意愿存在较大差异。
吴景豪 , 刘晔 , 唐红林 . 广东省公务员考试被录取应届生的梯次迁移模式及影响机制[J]. 热带地理, 2025 , 45(2) : 250 -263 . DOI: 10.13284/j.cnki.rddl.20240651
As China enters a critical transition period towards a knowledge-based economy, the optimization of the educational attainment structure and spatial distribution of the civil service, a crucial component of modernizing the national governance system and capacity, exerts a profound influence on enhancing government efficiency and fostering social progress. Based on recruitment data from the 2023 Guangdong Provincial Civil Service Examination, this study employs spatial statistical methods and Multivariate Logistic Regression analysis to examine the urban hierarchy migration model of newly graduated students admitted to civil service positions and its influencing factors. The research findings indicate: (1)The migration model of admitted newly graduated students are predominantly migrate down the urban hierarchy. For non-equivalent-level migrations, destinations are mainly fourth-, third-, and first-tier cities, whereas for equivalent-level migrations, destinations are primarily fourth-, third-, and second-tier cities. (2)Among personal attributes (including gender, university ranking, and the tier of the city where the graduation school is located), except for graduates from universities in the fourth- and fifth-tier cities, all other groups predominantly migrated down the urban hierarchy. (3)In terms of work-unit level and job requirements (including educational qualifications and work experience), the admitted candidates across all groups predominantly migrated down the urban hierarchy. (4) The results of the multiple logistic regression showed that personal attributes, work-unit level, and job requirements jointly affected the choice of migration mode for admitted candidates. Personal attributes and job requirements have a relatively significant impact; the better the personal attributes and the higher the job requirements, the more likely they are to migrate up the urban hierarchy. The effect of job conditions was not significant. (5)The results of the mechanism analysis revealed that the choice of migration model among newly graduated students is a complex and dynamic decision-making process underpinned by the interplay of multiple factors, such as government policy guidance, job characteristics, personal factors, and urban conditions. The decision-making and selection process in the selection mechanism for the migration mode of newly recruited graduates in the civil service examination is complex and dynamic, involving the interaction of multiple factors, such as government policy guidance, job characteristics, personal factors, and urban conditions, with objective limitations, personal abilities and resources, and subjective willingness. Compared to other non-establishment employment models, this employment model has a stronger possibility of migrating down the urban hierarchy, which may be caused by significant differences in the sources of job settings, competition intensity, and subjective willingness. To achieve the strategic goal of building a high-quality young civil service, the government should consider the multifaceted and complex interactions within the recruitment process, leverage its administrative functions, flexibly adjust job settings, and attract and retain outstanding newly graduated students through measures such as optimizing the urban environment and enhancing public service levels. This study has significant implications for local governments in formulating scientific and reasonable civil service recruitment policies tailored to local conditions, and guiding newly graduated university students to make informed and rational decisions when applying for civil service positions.
表1 变量定义与特征描述Table 1 Definition and description of variables |
类别 | 变量 | 说明 | 人数/人 | 占总人数比例/% | 变量 类型 |
---|---|---|---|---|---|
因 变 量 | 迁移 类型 | 梯次迁移 | 1 321 | 13.62 | 四分类变量 |
平行迁移 | 975 | 10.05 | |||
逆向梯次迁移 | 6 302 | 64.95 | |||
不迁移 | 1 104 | 11.38 | |||
个人属性 | 性别 | 男性 | 5 575 | 57.46 | 二分类变量 |
女性 | 4 127 | 42.54 | |||
毕业 学校 等级 | 双一流高校 | 763 | 7.86 | 四分类变量 | |
双一流学科高校 | 1 399 | 14.42 | |||
普通高校 | 7 196 | 74.17 | |||
专科学校 | 344 | 3.55 | |||
来源 城市 等级 | 一线城市 | 5 408 | 55.74 | 五分类变量 | |
新一线城市 | 1 238 | 12.76 | |||
二线城市 | 1 384 | 14.26 | |||
三线城市 | 1 199 | 12.36 | |||
四、五线城市 | 473 | 4.88 | |||
岗位条件 | 单位 等级 | 省直 | 714 | 7.36 | 五分类变量 |
市直 | 1 080 | 11.13 | |||
区县 | 4 734 | 48.79 | |||
街道 | 783 | 8.07 | |||
乡镇 | 2 391 | 24.65 | |||
岗位要求 | 学历 要求 | 研究生及以上 | 785 | 8.09 | 三分类变量 |
本科及以上 | 7 829 | 80.69 | |||
专科及以上 | 1 088 | 11.22 | |||
专业 要求 | 理工科 | 3 172 | 32.70 | 六分类变量 | |
人文科学 | 824 | 8.49 | |||
医科 | 340 | 3.50 | |||
商科 | 1 594 | 16.43 | |||
政法类 | 2 171 | 22.38 | |||
不限专业 | 1 601 | 16.50 | |||
专业技术要求 | 需要专业等级证书 | 669 | 6.90 | 二分类变量 | |
不限 | 9 033 | 93.10 | |||
本地户籍要求 | 有 | 330 | 3.40 | 二分类变量 | |
不限 | 9 372 | 96.60 | |||
性别要求 | 有 | 2 376 | 24.49 | 二分类变量 | |
不限 | 7 326 | 75.51 | |||
政治面貌要求 | 需要政治面貌为党员、民主党派或群众 | 376 | 3.88 | 二分类变量 | |
不限 | 9 326 | 96.12 | |||
基层工作经验要求 | 需要两年基层工作经验或“三支一扶”经历 | 314 | 3.24 | 二分类变量 | |
不限 | 9 388 | 96.76 |
|
表2 样本概况Table 2 Overview of samples |
样本类型 | 样本量/人 | 迁移类型 | 样本量/人 | 占比/% |
---|---|---|---|---|
被录取 应届生 | 9 702 | 梯次迁移 | 1 321 | 13.62 |
平行迁移 | 975 | 10.05 | ||
逆向梯次迁移 | 6 302 | 64.95 | ||
不迁移 | 1 104 | 11.38 |
表3 个人属性与迁移模式交叉分析Table 3 Cross analysis table of personal attributes and migration model |
个人属性 | 梯次迁移 | 平行迁移 | 逆向梯次迁移 | 不迁移 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
人数/人 | 比例/%* | 人数/人 | 比例/% | 人数/人 | 比例/% | 人数/人 | 比例/% | |||||
性别 | 男 | 849 | 15.23 | 556 | 9.97 | 3 576 | 64.14 | 594 | 10.66 | |||
女 | 472 | 11.44 | 419 | 10.15 | 2 726 | 66.05 | 510 | 12.36 | ||||
毕业学校等级 | 双一流高校 | 135 | 17.69 | 110 | 14.42 | 386 | 50.59 | 132 | 17.30 | |||
双一流学科高校 | 142 | 10.15 | 133 | 9.51 | 914 | 65.33 | 210 | 15.01 | ||||
普通高校 | 1 036 | 14.39 | 716 | 9.95 | 4 716 | 65.54 | 728 | 10.12 | ||||
专科学校 | 8 | 2.33 | 16 | 4.65 | 286 | 83.14 | 34 | 9.88 | ||||
迁出城市等级 | 一线城市 | 0 | 0.00 | 293 | 5.42 | 4 298 | 79.47 | 817 | 15.11 | |||
新一线城市 | 381 | 30.78 | 25 | 2.02 | 800 | 64.62 | 32 | 2.58 | ||||
二线城市 | 311 | 22.47 | 249 | 17.99 | 762 | 55.06 | 62 | 4.48 | ||||
三线城市 | 347 | 28.94 | 287 | 23.94 | 430 | 35.86 | 135 | 11.26 | ||||
四、五线城市 | 282 | 59.62 | 121 | 25.58 | 12 | 2.54 | 58 | 12.26 |
|
表4 岗位条件及要求与迁移模式交叉分析Table 4 Cross analysis of job conditions and requirements and migration mode |
岗位条件与要求 | 梯次迁移 | 平行迁移 | 逆向梯次迁移 | 不迁移 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
人数/人 | 比例*/% | 人数/人 | 比例/% | 人数/人 | 比例/% | 人数/人 | 比例/% | |||||
岗位条件 | 省直 | 130 | 14.09 | 72 | 9.52 | 433 | 63.65 | 79 | 12.74 | |||
市直 | 192 | 18.21 | 176 | 10.08 | 601 | 60.64 | 111 | 11.06 | ||||
区县 | 667 | 17.78 | 451 | 16.30 | 3013 | 55.65 | 603 | 10.28 | ||||
街道 | 169 | 21.58 | 88 | 11.24 | 362 | 46.23 | 164 | 20.95 | ||||
乡镇 | 163 | 6.82 | 188 | 7.86 | 1893 | 79.17 | 147 | 6.15 | ||||
学历 | 研究生及以上 | 126 | 14.80 | 120 | 10.07 | 425 | 63.30 | 114 | 11.83 | |||
本科及以上 | 1159 | 16.05 | 788 | 15.29 | 4956 | 54.14 | 926 | 14.52 | ||||
大专及以上 | 36 | 3.31 | 67 | 6.16 | 921 | 84.65 | 64 | 5.88 | ||||
专业 | 理工科 | 522 | 16.46 | 331 | 10.44 | 1923 | 60.62 | 396 | 12.48 | |||
人文科学 | 133 | 16.14 | 95 | 11.53 | 496 | 60.19 | 100 | 12.14 | ||||
医科 | 76 | 22.35 | 31 | 9.12 | 160 | 47.06 | 73 | 21.47 | ||||
商科 | 149 | 9.35 | 146 | 9.16 | 1141 | 71.58 | 158 | 9.91 | ||||
政法类 | 334 | 15.38 | 255 | 11.75 | 1300 | 59.88 | 282 | 12.99 | ||||
不限 | 107 | 6.68 | 117 | 7.31 | 1282 | 80.07 | 95 | 5.93 | ||||
专业技术要求 | 有 | 106 | 15.84 | 91 | 13.60 | 380 | 56.80 | 92 | 13.75 | |||
无 | 1215 | 13.45 | 884 | 9.79 | 5922 | 65.56 | 1012 | 11.20 | ||||
户籍要求 | 有 | 11 | 3.33 | 11 | 3.33 | 276 | 83.64 | 32 | 9.70 | |||
无 | 1310 | 13.98 | 964 | 10.29 | 6026 | 64.30 | 1072 | 11.44 | ||||
性别要求 | 有 | 534 | 22.47 | 255 | 10.73 | 1236 | 52.02 | 351 | 14.77 | |||
无 | 787 | 10.74 | 720 | 9.83 | 5066 | 69.15 | 753 | 10.28 | ||||
政治面貌要求 | 有 | 57 | 15.16 | 58 | 15.43 | 223 | 59.31 | 38 | 10.11 | |||
无 | 1264 | 13.55 | 917 | 9.83 | 6079 | 65.18 | 1066 | 11.43 | ||||
基层要求 | 有 | 38 | 12.10 | 32 | 10.19 | 211 | 67.20 | 33 | 10.51 | |||
无 | 1283 | 13.67 | 943 | 10.04 | 6091 | 64.88 | 1071 | 11.41 |
表5 公务员考试被录取应届毕业生迁移的多元Logistic回归结果(N=9 702)Table 5 Multiple logistic regression results on the migration of college graduates (N=9 702) |
影响因素 | 变量组 | (1) 梯次迁移 | (2) 平行迁移 | (3) 不迁移 | |||||
---|---|---|---|---|---|---|---|---|---|
发生比 | 标准误 | 发生比 | 标准误 | 发生比 | 标准误 | ||||
性别(参照组=男性) | 女性 | 1.378*** | (0.13) | 1.215** | (0.11) | 1.537*** | (0.12) | ||
毕业学校等级 (参照组=普通本科) | 双一流高校 | 4.092*** | (0.63) | 4.362*** | (0.61) | 2.463*** | (0.30) | ||
双一流学科高校 | 2.005*** | (0.27) | 2.293*** | (0.28) | 1.513*** | (0.14) | |||
专科学校 | 0.966 | (0.46) | 1.080 | (0.36) | 1.339 | (0.37) | |||
迁出城市 (参照组=二线城市) | 一线城市 | 0.000 | (0.00) | 0.139*** | (0.02) | 1.913*** | (0.27) | ||
新一线城市 | 0.740*** | (0.08) | 0.055*** | (0.01) | 0.370*** | (0.08) | |||
三线城市 | 3.471*** | (0.40) | 3.182*** | (0.36) | 5.605*** | (0.96) | |||
四、五线城市 | 212.712*** | (70.41) | 82.879*** | (27.46) | 156.836*** | (56.68) | |||
单位等级 (参照组=区县) | 省直 | 0.532*** | (0.08) | 0.849 | (0.15) | 0.474*** | (0.08) | ||
市直 | 1.357** | (0.17) | 1.869*** | (0.22) | 0.697*** | (0.09) | |||
街道 | 6.160*** | (0.90) | 2.802*** | (0.41) | 3.451*** | (0.39) | |||
乡镇 | 0.507*** | (0.06) | 0.685*** | (0.08) | 0.600*** | (0.06) | |||
学历学位 (参照组=本科) | 研究生及以上 | 1.440** | (0.22) | 1.580*** | (0.21) | 1.421*** | (0.18) | ||
专科 | 0.109*** | (0.03) | 0.388*** | (0.09) | 0.248*** | (0.06) | |||
专业类型 (参照组=理工科) | 人文科学 | 0.884 | (0.13) | 0.977 | (0.14) | 0.817 | (0.11) | ||
医科 | 2.069*** | (0.42) | 0.962 | (0.22) | 1.972*** | (0.32) | |||
商科 | 0.885 | (0.11) | 1.011 | (0.12) | 0.695*** | (0.08) | |||
政法类 | 1.245* | (0.14) | 1.347*** | (0.15) | 0.918 | (0.10) | |||
不限 | 0.394*** | (0.06) | 0.581*** | (0.09) | 0.420*** | (0.06) | |||
专业技术要求(参照组=无) | 有 | 0.557*** | (0.10) | 0.981 | (0.16) | 0.707** | (0.11) | ||
户口要求(参照组=无) | 有 | 2.003 | (0.88) | 0.716 | (0.27) | 2.400*** | (0.65) | ||
性别要求(参照组=无) | 有 | 5.702*** | (0.63) | 2.230*** | (0.26) | 3.700*** | (0.37) | ||
政治面貌要求(参照组=无) | 有 | 1.528** | (0.30) | 1.678*** | (0.29) | 1.008 | (0.19) | ||
基层要求(参照组=无) | 有 | 7.822*** | (2.29) | 2.811*** | (0.71) | 4.904*** | (1.20) | ||
常数 | 0.196*** | (0.02) | 0.204*** | (0.02) | 0.061*** | (0.01) | |||
-2倍对数似然值 | 6 017.928 | ||||||||
卡方 | 5 673.465*** | ||||||||
预测准确率/% | 70.0 |
|
1 《广东省2023年考试录用公务员公告》:具体信息见http://www.gd.gov.cn/zwgk/gsgg/content/post_4078069.html。
2 《城市商业魅力排行榜》:新一线城市研究所通过城市大数据,围绕商业资源集聚度、城市枢纽性、城市人活跃度、生活方式多样性和未来可塑性5个维度评估全国各城市发展情况,该分级结果能科学、全面地反映城市吸引力。具体信息见https://www.datayicai.com/report/detail/999638。
吴景豪:数据收集、数据分析、论文写作、论文修改;
刘 晔:研究设计、论文修改、监督指导;
唐红林:论文修改。
蔡昉. 1995. 人口迁移和流动的成因、趋势与政策. 中国人口科学,(6):8-16.
Cai Fang. 1995. The Causes, Trends, and Policies of Population Migration and Mobility. Chinese Journal of Population Science, (6): 8-16.
|
蔡昉. 2001. 劳动力迁移的两个过程及其制度障碍. 社会学研究,(4):44-51.
Cai Fang. 2001. The Two Processes of Labor Migration and Its Institutional Obstacles. Sociological Studies, (4): 44-51.
|
陈强. 2014. 高级计量经济学及stata应用. 北京:高等教育出版社,192-204.
Chen Qiang. 2014. Advanced Econometrics and Stata Applications. Beijing: Higher Education Press, 192-204.
|
Cui C, Wang Y F, and Wang Q. 2022. The Interregional Migration of Human Capital: The Case of "First-Class" University Graduates in China. Applied Spatial Analysis and Policy, 15: 397-419.
|
Di Cintio M and Grassi E. 2013. Internal Migration and Wages of Italian University Graduates. Papers in Regional Science, 92: 119-140.
|
窦旺胜,秦波,郝美竹,万思齐. 2023. 中国青年流动人口城市选择的空间特征及影响因素. 地理研究,42(5):1234-1247.
Dou Wangsheng, Qin Bo, Hao Meizhu, and Wan Siqi. 2023. Spatial Characteristics and Influencing Factors of Young Migrants' Selection of City in China. Geographical Research, 42(5): 1234-1247.
|
Faggian A and McCann P. 2009a. Universities, Agglomerations and Graduate Human Capital Mobility. Tijdschrift Voor Economische En Sociale Geografie, 100: 210-223.
|
Faggian A and McCann P. 2009b. Human Capital, Graduate Migration and Innovation in British Regions. Cambridge Journal of Economics, 33: 317-333.
|
冯承才. 2022. 新生代流动青年城市居留意愿及其影响因素——基于对上海市新生代流动青年的考察. 青年研究,(5):81-93,96.
Feng Chengcai. 2022. The Willingness of the New Generation of Mobile Youth to Reside in Cities and Its Influencing Factors: Based on an Investigation of the New Generation of Mobile Youth in Shanghai. Youth Studies, (5): 81-93, 96.
|
Florida R. 2002. The Economic Geography of Talent. Annals of the Association of American Geographers, 92: 743-755.
|
高喆,邱嘉怡,余家怡,李昱霄,敖荣军. 2023. 高学历人才逆向梯次迁移现象及机制研究——以北上广深应聘至武汉的中小学教师为例. 地理研究,42(1):123-136.
Gao Zhe, Qiu Jiayi, Yu Jiayi, Li Yuxiao, and Ao Rongjun. 2023. Research on Trend and Mechanism of Highly Educated Population Migrating Down to Urban Hierarchy: Taking the Candidates from Beijing, Shanghai, Guangzhou, and Shenzhen for the Primary and Middle School Teachers in Wuhan as an Example. Geographical Research, 42(1): 123-136.
|
Gu H, Meng X, Shen T, and Wen L. 2020. China's Highly Educated Talents in 2015: Patterns, Determinants and Spatial Spillover Effects. Applied Spatial Analysis and Policy, 13: 631-648.
|
浩飞龙,张杰,王士君. 2022. 国内外城市舒适性研究综述与展望. 地理科学进展,41(12):2396-2409.
Hao Feilong, Zhang Jie, and Wang Shijun. 2022. A Literature Review of Urban Amenity and Its Research Prospects. Progress in Geography, 41(12): 2396-2409.
|
何仲禹,翟国方. 2015. 我国大学生就业城市选择意愿及其影响因素分析. 人文地理,30(2):37-42,102.
He Zhongyu and Zhai Guofang. 2015. Employment Location Choice of Chinese College Students and Its Determinants. Human Geography, 30(2): 37-42, 102.
|
黄欣怡. 2020. Stata:多元 Logit 模型详解 (Mlogit). (2020-10-16)[2024-09-31]. https: //www.lianxh.cn/news/270f2c9e75d4a.html.
Huang Xinyi. 2020. Stata: Multi Logit Model Detailed Annotation (Mlogit). (2020-10-16)[2024-09-31]. https: //www.lianxh.cn/news/270f2c9e75d4a.html.
|
Huang M, Xing C B, and Cui X Y. 2022. Does College Location Affect the Location Choice of New College Graduates in China? China & World Economy, 30: 135-160.
|
Ishitani T T. 2011. The Determinants of out-Migration among in-State College Students in the United States. Research in Higher Education, 52: 107-122.
|
Lai W Y, Song H, Wang C, and Wang H H. 2021. Air Pollution and Brain Drain: Evidence from College Graduates in China. China Economic Review, 68: 101624.
|
李玲,Fan C C. 2000. 社会经济结构转型期迁移与非迁移人口的工作选择与转换──广州劳动市场初步研究. 人口研究,(2):16-25.
Li Ling and Fan C Cindy. 2000. Job Choice and Transfer of the Migrant and Non-Migrant Population during the Transformation of the Socio-Economic Structure: A Study of the Labour Market in Guangzhou. Population Research, (2): 16-25.
|
李瑞,吴殿廷,鲍捷,邱研,王维. 2013. 高级科学人才集聚成长的时空格局演化及其驱动机制——基于中国科学院院士的典型分析. 地理科学进展,32(7):1123-1138.
Li Rui, Wu Dianting, Bao Jie, Qiu Yan, and Wang Wei. 2013. Evolution of Temporal and Spatial Pattern and Driving Mechanisms of Agglomerative Growth of Senior Science Talents: A Case Study of Academicians of CAS. Progress in Geography, 32(7): 1123-1138.
|
李双双,延军平. 2011. 中国当代地理教授、研究员地域分异. 地理科学进展,30(10):1298-1304.
Li Shuangshuang and Yan Junping. 2011. Geographical Distribution and Regional Differentiation of Contemporary Geographical Professors and Researchers in China. Progress in Geography, 30(10): 1298-1304.
|
Lin X B, Zhong J J, Ren T, and Zhu G W. 2022. Spatial-Temporal Effects of Urban Housing Prices on Job Location Choice of College Graduates: Evidence from Urban China. Cities, 126: 103690.
|
刘嘉杰,刘涛,曹广忠. 2023. 舒适性迁移研究进展与启示. 地理科学进展,42(6):1216-1228.
Liu Jiajie, Liu Tao, and Cao Guangzhong. 2023. Amenity Migration: An International Review and Inspiration. Progress in Geography, 42(6): 1216-1228.
|
刘晔,王若宇,薛德升,曾经元. 2019. 中国高技能劳动力与一般劳动力的空间分布格局及其影响因素. 地理研究,38(8):1949-1964.
LiuYe, Wang Ruoyu, Xue Desheng, and Zeng Jingyuan. 2019. The Spatial Pattern and Determinants of Skilled Laborers and Less-Skilled Laborers in China: Evidence from 2000 and 2010 Censuses. Geographical Research, 38(8): 1949-1964.
|
刘晔,黄翠盈,李晴,武荣伟. 2023. 2000—2020年中国高学历人才分布格局及其影响因素研究. 地理研究,42(11):2827-2844.
Liu Ye, Huang Cuiying, Li Qing, and Wu Rongwei. 2023. Spatial Patterns and Determinants of Highly Educated Talent in China, 2000-2020. Geographical Research, 42(11): 2827-2844.
|
龙之朱. 2023. 国考报名“冷热不均”冷门职位能不能降门槛. (2023-10-27)[2024-09-31]. http://mzqb.cyol.com/html/2023-10/27/content_347537.htm
Long Zhizhu. 2023. Is it Possible to Lower the Threshold for Unpopular Positions Due to Uneven Registration for the National Civil Service Examination. (2023-10-27)[2024-09-31]. http://mzqb.cyol.com/html/2023-10/27/content_347537.htm.
|
聂晶鑫,刘合林. 2018. 中国人才流动的地域模式及空间分布格局研究. 地理科学,38(12):1979-1987.
Nie Jingxin and Liu Helin. 2018. Spatial Pattern and the Resulting Characteristics of Talent Flows in China. Scientia Geographica Sinica, 38(12): 1979-1987.
|
Plane D A, Henrie C J, and Perry M J. 2005. Migration up and down the Urban Hierarchy and across the Life Course. Proceedings of The National Academy of Sciences of The United States of America, 102: 15313-15318.
|
齐宏纲,戚伟,刘振,赵美风. 2023. 中国人才分布的学历梯度分异性:时空格局及影响机理. 地理科学进展,42(5):821-836.
Qi Honggang, Qi Wei, Liu Zhen, and Zhao Meifeng. 2023. Heterogeneity of Educational Attainment of Talents in China: Spatial and Temporal Patterns and Driving Factors. Progress in Geography, 42(5): 821-836.
|
Tang A Z R, Rowe F, Corcoran J, and Sigler T. 2014. Where Are the Overseas Graduates Staying On? Overseas Graduate Migration and Rural Attachment in Australia. Applied Geography, 53: 66-76.
|
王若宇,刘晔,薛德升. 2018. 2000―2010年中国地区人才优势度与经济发展的空间特征及耦合协调度分析. 热带地理,38(2):184-195.
Wang Ruoyu, Liu Ye, and Xue Desheng. 2018. Coupled Coordination Analysis of Regional Talent Superiority and Economy Development in China from 2000 to 2010. Tropical Geography, 38(2): 184-195.
|
王秀梅,黄春晓,许宏福,杨志强. 2023. 高端人才流动的网络关联特征与影响因素分析——对长三角地区高端人才流动的观察. 热带地理,43(8):1489-1500.
Wang Xiumei, Huang Chunxiao, Xu Hongfu, and Yang Zhiqiang. 2023. Network Correlation Characteristics and Influencing Factors of High-Level Talent Flow: Observation of the High-Level Talent in the Yangtze River Delta. Tropical Geography, 43(8): 1489-1500.
|
王一凡,崔璨,王强,宁越敏,杨振山. 2021. “人才争夺战”背景下人才流动的空间特征及影响因素——以中国“一流大学”毕业生为例. 地理研究,40(3):743-761.
Wang Yifan, Cui Can, Wang Qiang, Ning Yuemin, and Yang Zhenshan. 2021. Migration of Human Capital in the Context of Vying for Talent Competition: A Case Study of China's "First-class" University Graduates. Geographical Research, 40(3): 743-761.
|
王钊,杨山. 2015. 多中心城市区域城市蔓延冷热点格局及演化——以苏锡常地区为例. 经济地理,35(7):59-65.
Wang Zhao and Yang Shan. 2015. Evolution of Cold-Hot Spot Pattern of Polycentric Urban Areas Urban Sprawl: A Case Study of Suzhou-Wuxi-Changzhou Area. Economic Geography, 35(7): 59-65.
|
Wang Q, Cui C, Yu C Y, and Wang Y F. 2023. From Domicile to University to Work: The Sequential Migration of Young Educated People in the Context of the "Battle for Talent" in China. Population Research and Policy Review, 42: 92.
|
温锋华,古恒宇,许志斌. 2022. 中国省际人口迁移网络结构及时空演化. 经济地理,42(6):13-21,54.
Wen Fenghua, Gu Hengyu, and Xu Zhibin. 2022. Network Structure and Spatiotemporal Evolution of China's Interprovincial Migration. Economic Geography, 42(6): 13-21, 54.
|
武荣伟,王若宇,刘晔,古恒宇. 2020. 2000—2015年中国高学历人才分布格局及其影响机制. 地理科学,40(11):1822-1830.
Wu Rongwei, Wang Ruoyu, Liu Ye, and Gu Hengyu. 2020. Spatial Pattern and Determinants of Highly Educated Talents in China, 2000-2015. Scientia Geographica Sinica, 40(11): 1822-1830.
|
习近平. 2022. 高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告. (2022-10-16) [2024-09-30]. https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm.
Xi Jinping. 2022. Hold High the Great Banner of Socialism with Chinese Characteristics and Work Together for the Comprehensive Construction of a Modern Socialist Country: A Report at the 20th National Congress of the Communist Party of China. (2022-10-16) [2024-09-30]. https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm.
|
谢圆圆,李锦昊,马凌. 2022. 青年知识移民就业城市选择及其影响因素——以广州市高校大学生为例. 热带地理,42(3):385-395.
Xie Yuanyuan, Li Jinhao, and Ma Ling. 2022. Determinants of Employment City Selection of Young Intellectual Migrants: A Case Study of Guangzhou University Graduates. Tropical Geography, 42 (3): 385-395.
|
Zhao M Y. 2023a. Moving to 'Bei-Shang-Guang'? Internal Migration, Local Hukou Barriers and Labour Market Outcomes among College Graduates in China. Population Space and Place, 29: e2651.
|
Zhao M Y. 2023b. Returning Home for a Better Job? Return Migration, Family Background, and Labor Market Outcomes among Recent College Graduates in China. Chinese Journal of Sociology, 9: 408-428.
|
钟雨齐,王强,崔璨,王一凡. 2021. 人力资本的空间迁移模式与影响因素分析——以南京市高校毕业生为例. 地理科学,41(6):960-970.
Zhong Yuqi, Wang Qiang, Cui Can, and Wang Yifan. 2021. Migration Pattern of Human Capital and Its Influential Factors: A Case Study of University Graduates in Nanjing City. Scientia Geographica Sinica, 41(6): 960-970.
|
周亮,张亚. 2019. 中国顶尖学术型人才空间分布特征及其流动趋势——以中国科学院院士为例. 地理研究,38(7):1749-1763.
Zhou Liang and Zhang Ya. 2019. The Spatial Distribution and Flow Trends of Chinese Top Academic Talents: Based on the Case Study of Academicians of Chinese Academy of Sciences. Geographical Research, 38(7): 1749-1763.
|
/
〈 |
|
〉 |