Spatio-Temporal Evolution and Risk Profiling of the COVID-19 Epidemic in Shaanxi Province
Received date: 2020-04-06
Revised date: 2020-04-28
Online published: 2020-06-30
The sudden outbreak and spread of the Corona Virus Disease 2019 (COVID-19) has posed great challenges to the society as well as the academia of not only China but the whole world. The occurrence of epidemic has obvious time and space attributes. Analysis of the spatiotemporal diffusion pattern and process of the epidemic reflects the dynamics of the interaction between humans and the COVID-19, it is worth discussing from the perspective of geography, which is very important for measures for prevention and control of this public health emergency. Based on the confirmed COVID-19 cases’ details manually extracted from the official reports and the relevant Point Of Interest (POI) data, this study aims to reveal the spatiotemporal evolution and risk profiling of the COVID-19 epidemic in Shaanxi province. The results are as follows: Firstly, the age-gender structure of the confirmed cases was diamond-shaped, where more males than females are confirmed, and the overall age trended to be medium-old aged, especially the age group of 40-49. Both non-local and local infections were dominantly caused by the flows of people between cities. Most of the infections belonged to small clusters of core families due to imported cases from Wuhan City, while other large mixed cluster infections in special places may have a deep influence. Secondly, the epidemic evolution process can be roughly divided into three stages, namely wave development stage (Jan.23rd-Feb.6th, 2020), low-speed recession stage (Feb.7th-20th), and stable clearance stage (Feb.21st-Mar.15th). There were lag periods between the cases’ confirmed dates and the onset or initial diagnosis dates. Moreover, the initial reporting dates of confirmed populations were synchronized with the overall evolution of the epidemic. Thirdly, the spatial flow of the epidemic to Shaanxi province was different from that to other provinces around Hubei. That is, it had a unique spatial pattern of only a single cluster center. The overall spatial distribution of the epidemic presented an inverted T-type pattern concentrated in central and southern Shaanxi with significant spatial differentiation. The spatial evolution at the city level was three-pronged. Here, the Wuhan-Xi'an path was the most frequent flow path, exhibiting the flow pattern of "from one source to many sinks, and from Wuhan to central and southern Shaanxi". Finally, the high risk areas were these key cities, for example Xi'an, as shown by the "one big cluster with three small collections" pattern, with the risk level in urban areas being higher than that in the surrounding counties.
Jiaobei Wang , Gang Li , Jianpo Wang , Jingqi Qiang , Dandan Zhu . Spatio-Temporal Evolution and Risk Profiling of the COVID-19 Epidemic in Shaanxi Province[J]. Tropical Geography, 2020 , 40(3) : 432 -445 . DOI: 10.13284/j.cnki.rddl.003246
1 http://ncov.mapplus.cn/api。
柴彦威,张文佳. 2020. 时空间行为视角下的疫情防控——应对2020新型冠状病毒肺炎突发事件笔谈会. 城市规划:1[2020-03-31].http://kns.cnki.net/kcms/detail/11.2378.TU.20200214. 1746.034.html. [Chai Yanwei and Zhang Wenjia. 2020. Epidemic Prevention and Control from the Perspective of Time-space Behavior- A Written Discussion on Coping with 2020 COVID-19 Emergencies. Urban Planning: 1[2020-03-31].http://kns.cnki.net/kcms/detail/11.2378.TU.20200214. 1746.034.html. ]
|
程杨,杨林生,李海蓉. 2006.全球环境变化与人类健康.地理科学进展,25(2):46-58. [Cheng Yang, Yang Linsheng and Li Hairong. 2006. Global Environmental Change and Human Health. Advances in Geosciences, 25 (2): 46-58. ]
|
程杨,李海蓉,杨林生. 2009 .中国明清时期疫病时空分布规律的定量研究.地理研究,28(4):1059-1068. [Cheng Yang, Li Hairong and Yang Linsheng. 2009. Quantitative Study on Spatiotemporal Distribution of Epidemic Diseases in Ming and Qing Dynasties. Geography Research, 28(4): 1059-1068. ]
|
陈宝,况荣华,曹飞,李譞超,黄鹏. 2014. 地理信息系统在疾病危险因素研究中的应用. 南昌大学学报(医学版),54(2):89-92,96. [Chen Bao, Kuang Ronghua, Cao Fei, Li Xuanchao and Huang Peng. 2014. Application of Geographic Information System in the Study of Disease Risk Factors. Journal of Nanchang University (Medicine), 54 (2): 89-92, 96. ]
|
迟文学,王劲峰,李新虎,廖一兰. 2007. 出生缺陷的空间点格局分析.环境与健康杂志,24(4):238-241. [Chi Wenxue, Wang Jingfeng, Li Xinhu and Liao Yilan. 2007. Spatial Pattern Analysis of Birth Defects. Journal of Environment and Health, 24 (4): 238-241.]
|
邓厚培. 1994. 疾病地理研究的基本理论和方法. 首都师范大学学报(自然科学版),(3):94-98. [Deng Houpei. 1994. Basic Theory and Method of Disease Geography Research. Journal of Capital Normal University (Natural Science Edition), (3): 94-98. ]
|
范新生,应龙根. 2005.中国SARS疫情的探索性空间数据分析.地球科学进展,(3):282-291. [Fan Xinsheng and Ying Longgen. 2005. An Exploratory Spatial Data Analysis of SARS Epidemic in China. Advances in Earth Science, (3): 282-291. ]
|
郭凤云,路紫. 2009.基于空间分析方法的疾病地理研究进展.地理信息世界,7(6):22-26,46. [Guo Fengyun and Lu Zi. 2009. Advances in Disease Geography Research Based on Spatial Analysis. Geographic Information World, 7 (6): 22-26, 46. ]
|
Huang C L, Wang Y M and Li X W. 2020. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet, S0140-6736(20): 30183-30185.
|
IPCC. 2001. IPCC Third Assessment Report: Climate Change 2001: Synthesis Report. (2001-04-12) [2020-04-01]. http://www.ipcc.ch/pdf/climate-changes-2001/synthesis-spm/synthesis-spm-cn.pdf.
|
Ji W, Wang W, Zhao X F, Zai J J and Li X G. 2020. Cross-Species Transmission of the Newly Identified Coronavirus 2019-nCoV. Journal of Medical Virology, 92(4): 433-440. DOI: 10.1002/jmv.25682.
|
金安楠,李钢,王皎贝,徐婷婷,于悦,胡志恒,杨佳辰. 2020. 深圳市冠状病毒肺炎(COVID-19)疫情时空演化与防控对策.陕西师范大学学报(自然科学版),48(3):18-32. [Jin Annan, Li Gang, Wang Jiaobei, Xu Tingting, Yu Yue, Hu Zhiheng and Yang Jiachen. 2020. Spatio-Temporal Evolution and Control Strategies of COVID-19 Epidemic in Shenzhen, China. Journal of Shaanxi Normal University (Natural Science Edition), 48(3): 18-32. DOI: 10.15893/j.cnki.Jsnu.2020.03.017. ]
|
李承倬,冯敖梓,武文韬,潘振宇,李筱,吕军,徐安定. 2020. 河南省新型冠状病毒肺炎疫情防控效果分析.中医学报,(3):497-500.[Li Chengzhuo, Feng Aozi, Wu Wentao, Pan Zhenyu, Li Xiao, Lv Jun and Xu Anding. 2020. Effect of COVID-19 Epidemic Prevention and Control in Henan Province. Chinese Journal of Traditional Chinese Medicine, (3): 497-500. ]
|
李立明. 2008. 流行病学. 北京:人民卫生出版社. [Li Liming. 2008. Epidemiology. Beijing: People's Medical Publishing House. ]
|
刘洁,罗万军,邓志宏,汪小杰,聂丽,王文娟,许渝,张晓慧,唐锋,王育继. 2020. 91例儿童新型冠状病毒肺炎确诊病例临床及流行病学特征.中华医院感染学杂志,(11):1625-1629.[Liu Jie, Luo Wanjun, Deng Zhihong, Wang Xiaojie, Nie Li, Wang Wenjuan, Xu Yu, Zhang Xiaohui, Tang Feng and Wang Yuji. 2020. Clinical and Epidemiological Characteristics of 91 Confirmed Children with COVID-19. Chinese Journal of Hospital Infectiology, (11): 1625-1629. ]
|
刘逸,李源,黎卓灵,韩芳菲. 2020. 新冠肺炎疫情在广东省的扩散特征.热带地理,40(3):367-374. [Liu Yi, Li Yuan, Li Zhuoling and Han Fangfei. Diffusion Characteristics of the Corona Virus Disease 2019 (COVID-19) Outbreak in Guangdong Province. Tropical Geography, 40(3):367-374.]
|
刘郑倩,叶玉瑶,张虹鸥,郭洪旭,杨骥,王长建. 2020. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径.热带地理,40(3):422-431. [Liu Zhengqian, Ye Yuyao, Zhang Hong'ou, Guo Hongxu, Yang Ji and Wang Changjian. 2020. Spatio-Temporal Characteristics and Transmission Path of COVID-19 Cluster Cases in Zhuhai. Tropical Geography, 40(3):422-431.]
|
Ord J K and Getis A. 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27: 286-306.
|
Ren L L, Wang Y M, Wu Z Q, Xiang Z C, Guo L, Xu T, Jiang Y Z, Xiong Y, Li Y J, Li X W, Li H, Fan G H, Gu X Y, Xiao Y, Gao H, Xu J Y, Yang F, Wang X M, Wu C, Chen L, Liu Y W, Liu B, Yang J, Wang X R, Dong J, Li L, Huang C L, Zhao J P, Hu Y, Cheng Z S, Liu L L, Qian Z H, Qin C, Jin Q, Cao B and Wang J W. 2020. Identification of A Novel Coronavirus Causing Severe Pneumonia in Human: A Descriptive Study. Chinese Medical Journal, 1-29[2020-01-29]. https://mp.weixin.qq.com/s/vfqJcjoXWRPqmzyr KvtkHw.
|
谭见安. 1990. 中华人民共和国地方病与环境图集. 北京:科学出版社.[Tan Jianan. 1990. Atlas of Endemic Diseases and Environment in the People's Republic of China. Beijing: Science Press. ]
|
谭见安. 2000. 中华人民共和国鼠疫与环境图集. 北京:科学出版社.[Tan Jianan. 2000. Atlas of Plague and Environment in the People's Republic of China. Beijing: Science Press. ]
|
谭然. 2018. 地理学视角下的中国拐卖儿童犯罪研究. 西安:西北大学. [Tan Ran. 2018. Research on the Crime of Abducting and Trafficking Children in China from the Perspective of Geography. Xi’an: Northwest University. ]
|
Tang S Y, Tang B and Nicola L B. 2020. Stochastic Discrete Epidemic Modeling of COVID-19 Transmission in the Province of Shaanxi Incorporating Public Health Intervention and Case Importation.(2020-02-25) [2020-04-01]. MedRxiv, https://doi.org/10.1101/2020.02.25.20027615.
|
王跃生. 2006. 当代中国家庭结构变动分析.中国社会科学,(1):96-108,207. [Wang Yuesheng. 2006. Analysis of Family Structure Changes in Contemporary China. Chinese Social Sciences, (1): 96-108, 207. ]
|
Wang C, Horby P W and Hayden F G. 2020. A Novel Coronavirus Outbreak of Global Health Concern. The Lancent, 395(10223): 470-473.
|
王丽萍,金水高. 2008. GIS空间分析技术在疟疾研究中应用.中国公共卫生,24(6):745-747.[Wang Liping and Jin Shuigao. 2008. Application of GIS Spatial Analysis Technology in Malaria Research. China Public Health, 24 (6): 745-747. ]
|
WHO. 1990. Potential Health Effects of Climate Change: Report of a WHO Task Group. Geneva: WHO/PEP/90.10.
|
Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y,Tao Z W, Tian J H, Pei Y Y, Yuan M L, Zhang Y L, Dai F H, Liu Y, Wang Q M, Zheng J J, Xu L, Holoes E C and Zhang Y Z. 2020. A New Coronavirus Associated with Human Respiratory Disease in China. Nature, 579: 265-269.
|
Xiao K P, Zhai J Q and Feng Y Y. 2020. Solation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. (2020-02-17) [2020-04-01].BioRxiv. Doi: https://doi.org/10.1101/2020. 02.17.951335.
|
Xiong H and Yan H L. 2020. Simulating the Infected Population and Spread Trend of 2019-nCov under Different Policy by EIR Model. (2020-02-10) [2020-04-01]. MedRxiv, Doi: https://doi.org/10.1101/2020.02.10.20021519.
|
杨煌. 2002. 医学地理学简介.卫生软科学,(2):46-48. [Yang Huang. 2002. Introduction to Medical Geography. Soft Science of Health, (2): 46-48. ]
|
杨林生,李海蓉,李永华,王五一,谭见安. 2010. 医学地理和环境健康研究的主要领域与进展.地理科学进展,29(1):31-44. [Yang Linsheng, Li Hairong, Li Yonghua, Wang Wuyi and Tan Jianan. 2010. Major Fields and Progress of Medical Geography and Environmental Health Research. Advances in Geographical Sciences, 29 (1): 31-44. ]
|
杨柳,李战,许华茹,常彩云,刘仲,李传彬,孙湛,景睿,刘铁诚,耿兴义,周敬文. 2020. 济南市10例儿童新型冠状病毒肺炎确诊病例流行病学和临床特征.山东大学学报(医学版):(4):36-39. [Yang Liu, Li Zhan, Xu Huaru, Chang Caiyun, Liu Zhong, Li Chuanbin, Sun Zhan, Jing Rui, Liu Tiecheng, Geng Xingyi and Zhou Jingwen. 2020. Epidemiological and Clinical Characteristics of 10 Confirmed Children with COVID-19 in Jinan. Journal of Shandong University (Medical Science): (4): 36-39. ]
|
杨莹莹,郭欣武,甘亚弟,刘海博,朱立超. 2007. 北京市大兴区2006年流动人口传染病发病情况. 首都公共卫生,1(6):256-258. [Yang Yingying, Guo Xinwu, Gan Yadi, Liu Haibo and Zhu Lichao. 2007. Prevalence of Floating Population Infectious Diseases in 2006 in Daxing District, Beijing. Capital Public Health, 1(6): 256-258. ]
|
张静,任志远. 2016. 陕西省城市可持续发展系统协调性评价.地域研究与开发,35(4):79-84. [Zhang Jing and Ren Zhiyuan. 2016. Evaluation of Urban Sustainable Development System Coordination in Shaanxi Province. Regional Research and Development, 35 (4): 79-84. ]
|
张晓光. 2019. 陕西省统计年鉴2019. 北京:中国统计出版社.[Zhang Xiaoguang. 2019. Shaanxi Statistical Yearbook 2019. Beijing: China Statistics Press. ]
|
周素红. 2020. 安全与健康空间规划与治理——应对2020新型冠状病毒肺炎突发事件笔谈会.城市规划:1[2020-02-19]. http://kns.cnki.net/kcms/detail/11.2378.TU.20200214.1747.040.html. [Zhou Suhong. 2020. Safe and Healthy Space Planning and Management-A Written Discussion on Coping with 2020 COVID-19 Emergencies. Urban Planning: 1[2020-02-19]. http://kns.cnki.net/kcms/detail/11.2378.TU.20200214.1747.040.html. ]
|
周涛,刘权辉,杨紫陌,廖敬仪,杨可心,白薇,吕欣,张伟. 2020. 新型冠状病毒感染肺炎基本再生数的初步预测.中国循证医学杂志,(3):359-364. [Zhou Tao, Liu Quanhui, Yang Zimo, Liao Jingyi, Yang Kexin, Bai Wei, Lv Xin and Zhang Wei. 2020. Preliminary Prediction of the Basic Regeneration Number of Novel Coronavirus Pneumonia. Chinese Journal of Evidence-Based Medicine, (3): 359-364. ]
|
/
〈 |
|
〉 |