Space Association Features of Domestic Tourist Flow Network in the Shanghai Metropolitan Area
Received date: 2020-11-16
Revised date: 2021-06-11
Online published: 2021-11-01
A metropolitan area refers to the central urban area and its surrounding hinterland. The area plays a strategic role in the development of its regional tourism economy. As a unique form and organization of regional spatial structure, tourist flows in metropolitan areas present different spatial structures and characteristics. However, the existing research on tourist flow is rarely explained from the perspective of metropolitan areas,. Therefore, this study examined the trip strategy data published by tourists, analyzed the spatial correlation characteristics of the tourist flow network in the Shanghai Metropolitan Area (SMA) from the node and network levels by employingsocial network theory and GIS spatial analysis methods and technologies, The results revealed the following: (1) the tourism nodes in SMAdisplayed obvious hierarchical structural characteristics, and the elite scenic spots occupied an important core position in the tourist flow network. Simultaneously, according to the comparative analysis of degree centrality and intermediary centrality, Shanghai tourism nodes, t could be categorized into four types: agglomeration, diffusion, equilibrium, and intermediary. (2) SMA presented a "single-core radial" spatial distribution pattern with Huangpu District at its center, and Huangpu District as the spatial diffusion source, with the mainstream diffusion directions of southwest (central Huangpu District-Songjiang District), southeast (central Huangpu District-Pudong New Area), northwest (central Huangpu District-Jiading District), and a few tourist flows spreading from central Huangpu District to Baoshan District and Chongming County in the north. (3) The topological structure of the Shanghai urban tourist flow network was characterized by low connection, strong diffusion, and balanced distribution. There were five condensed subgroups with high internal and low external correlations. The core-edge division of the network was significant, and the driving effect of the core area on the edge was limited. (4) There was an exponential relationship between tourist flow and the distance between scenic spots inSMA, which had an evident distance attenuation law. However, the attenuation degree in each distance segment was different, and the distance attenuation law of tourist flow was the most significant at 0–20km. Bycomparing the conclusions of this study with other types of domestic tourist flow networks, it was found that various types of domestic tourist flow networks had the same core-edge structure, but the difference lied in that other types of tourism flow networks showed the characteristics of a multi-center balanced structure, and the core nodes were usually high-grade scenic spots, while the tourist flow network in Shanghai was a "single-core radial" spatial structure with the central city as its core, and the core nodes were high-profile scenic spots without grades in the central city. This study provides an example for exploring analyzing the spatial characteristics of tourist flow networks by using the data of network travel notes and optimizing the spatial structure of tourism destinations in metropolitan areas.
Shanshan Yan , Heqing Zhang , Chen Jin . Space Association Features of Domestic Tourist Flow Network in the Shanghai Metropolitan Area[J]. Tropical Geography, 2021 : 1 -12 . DOI: 10.13284/j.cnki.rddl.03.闫闪闪-2020-0625上海都市区国内旅游流网络空间关联特征
表1 上海都市区国内旅游流网络评价指标Table 1 Network evaluation index |
指标 | 具体指标 | 计算公式 | 结果含义 |
---|---|---|---|
网络 节点 评价 相关 指标 | 流入度 | 程度中心性(Ci)等于流入度(C ini)与流出度(C outi)之和,程度中心性越大,说明该节点在网络中地位越重要; 中介中心性[C(ni)]代表某个节点对网络中资源控制程度,越大表明该节点在网络中越处于关键位置 | |
流出度 | |||
程度中心性 | |||
中介中心性 | 式中:gik是旅游者从旅游节点j到达旅游节点k的捷径数,gik(ni)是旅游者从节点j到达节点k经过节点i的捷径数 | ||
整体 网络 评价 指标 | 网络密度 | D=E/n(n-1) | 数值介于0~1之间,越接近1,密度越大 |
IN指数 |
| 式中:Mij为节点i到节点j的流量;n为节点数;IN介于0~1之间,数值越大,网络越倾向均衡分布 | |
DI指数 |
| ,即S表示流量总和。 DI指数介于0~1之间,越接近0,网络高度扩散;反之,网络高度聚集 | |
EI指数 | 式中:Di为i节点的流入度,Oi为i节点的流出度;EI指数介于0~100,越接近0,说明游客在两个方向均有相同程度的流动 |
表2 上海都市区景点程度中心性和中介中心性Table 2 Degree and intermediary centrality of tourist attractions in Shanghai metropolitan area |
旅游景点 | 程度中心性 | 中介中心性 | 类型 | ||
---|---|---|---|---|---|
流入度 | 流出度 | 中心度 | |||
外滩 | 1 494 | 1 426 | 2 920 | 958.36 | 均衡型节点 |
城隍庙 | 1 394 | 947 | 2 341 | 201.10 | 集聚型节点 |
田子坊 | 912 | 919 | 1 831 | 404.02 | 均衡型节点 |
南京路步行街 | 1 022 | 733 | 1 755 | 306.16 | 集聚型节点 |
豫园 | 853 | 807 | 1 660 | 235.36 | 集聚型节点 |
东方明珠 | 804 | 804 | 1 608 | 156.42 | 均衡型节点 |
新天地 | 423 | 495 | 918 | 401.51 | 中介型节点 |
外白渡桥 | 411 | 419 | 830 | 81.58 | 均衡型节点 |
迪士尼 | 389 | 383 | 772 | 340.52 | 中介型节点 |
1933老场坊 | 224 | 433 | 657 | 209.68 | 扩散型节点 |
杜莎蜡像馆 | 314 | 315 | 629 | 144.55 | 均衡型节点 |
甜爱路 | 308 | 307 | 619 | 201.17 | 均衡型节点 |
上海博物馆 | 313 | 296 | 609 | 119.47 | 均衡型节点 |
环球金融中心 | 293 | 292 | 585 | 180.03 | 均衡型节点 |
人民广场 | 300 | 281 | 581 | 57.21 | 均衡型节点 |
南翔 | 185 | 396 | 581 | 29.56 | 扩散型节点 |
武康路 | 227 | 353 | 580 | 96.21 | 扩散型节点 |
多伦路文化街 | 276 | 288 | 564 | 107.04 | 中介型节点 |
均值 | 563.44 | 549.67 | 1 113.33 | 235.00 | |
标准差 | 400.67 | 310.54 | 701.19 | 205.80 | |
最大值 | 1 494.00 | 1 426.00 | 2 920.00 | 958.36 | |
最小值 | 185.00 | 281.00 | 564.00 | 29.56 |
1 去哪儿网网址. https://travel.qunar.com;百度旅游网址. https://lvyou.baidu.com。
2 上海市文化和旅游局官方网站. https://whlyj.sh.gov.cn/。
Agiomirgianakis G, Serenis D and Tsounis N. 2017. Short-and Long-Run Determinants of Tourist Flows: the Case of South Korea. Advances in Applied Economic Research, 24: 861-872.
|
Angela C A, Laura F M, Ana M M and Gustavo R G. 2019. Science Mapping of Tourist Mobility 1980-2019. Technological Advancements in the Collection of the Data for Tourist Traceability. Sustainability, 11(17): 4738.
|
Artal-Tur A, Pallardo-Lopez V J and Requena-Silvente F. 2016. Examining the Impact of Visa Restrictions on International Tourist Flows Using Panel Data. Estudios De Economia, 43(2): 265-279.
|
Baggio R. 2008. Network Analysis of a Tourism Destination.Australia: The University of Queensland.
|
保继刚,楚艺芳. 1999. 旅游地理学. 修订版. 北京:高等教育出版社. [Bao Jigang and Chu Yifang. 1999. Tourism Geography. Revised Edition. Beijing: Higher Education Press. ]
|
陈浩,陆林,郑嬗婷. 2011. 基于旅游流的城市群旅游地旅游空间网络结构分析——以珠江三角洲城市群为例. 地理学报,66(2):257-266. [Chen Hao, Lu Lin and Zheng Shanting. 2011. The Spatial Network Structure of the Tourism Destinations in Urban Agglomerations Based on Tourist Flow: A Case Study of the Pearl River Delta. Acta Geographica Sinica, 66(2): 257-266. ]
|
Chen R, Liang C Y, Hong W C and Gu D X. 2015. Forecasting Holiday Daily Tourist Flow Based on Seasonal Support Vector Regression with Adaptive Genetic Algorithm. Applied Soft Computing, 26: 435-443.
|
Gu, Q S, Zhang H P, Chen M and Chen C C. 2019. Regionalization Analysis and Mapping for the Source and Sink of Tourist Flows. Isprs International Journal of Geo-Information, 8(7): 314.
|
Hardy A and Aryal J. 2019. Using Innovations to Understand Tourist Mobility in National Parks. Journal of Sustainable Tourism, 28(2): 263-283.
|
黄剑锋,陆林. 2015. 空间生产视角下的旅游地空间研究范式转型:基于空间涌现性的空间研究新范式. 地理科学,35(1):47-55. [Huang Jianfeng and Lu Lin. 2015. The Paradigm Transformation of Space in Tourism Destination from Perspective of Production of Space: A New Paradigm of Space Based on Emergence of Space. Scientia Geographica Sinica. 35(1): 47-55. ]
|
靳诚,徐菁,黄震方,曹芳东. 2014. 南京城市内部景点间游客流动特征分析. 地理学报,69(12):1858-1870. [Jin Chen, Xu Jing, Huang Zhenfang and Cao Fangdong. 2014. Analyzing the Characteristics of Tourist Flows Between the Scenic Spots in Inner City Based on Tourism Strategies: A Case Study in Nanjing. Acta Geographica Sinica, 69(12): 1858-1870. ]
|
Jin X, Qu M Y and Bao J G. 2019. Impact of Crisis Events on Chinese Outbound Tourist Flow: A framework for Post-Events Growth. Tourism Management, 74: 334-344.
|
Khalid U, Okafor L E and Shafiullah M. 2020. The Effects of Economic and Financial Crises on International Tourist Flows: A Cross-Country Analysis. Journal of Travel Research, 59(2): 315-334.
|
Kozminski C and Michalska B. 2016. The Seasonal Nature of Tourist Flows in Relation to Meteorological Conditions as Illustrated by the Case of Zachodniopomorskie Voivodeship. Bulletin of Geography-Socio-Economic Series, 34: 33-45.
|
Leiper N. 1979. The Framework of Tourism: Towards a Definition of Tourism, Tourist, and the Tourist Industry. Annals of Tourism Research, 6(4): 390-407.
|
李小建. 2005. 经济地理学研究中的尺度问题. 经济地理,25(4):433-436. [Li Xiaojian. 2005. Scale and Economic Geography Inquiry. Economic Geography, 25(4): 433-436. ]
|
刘法建,张捷,陈冬冬. 2010. 中国入境旅游流网络结构特征及动因研究. 地理学报,65(8):1013-1024. [Liu Fajian, Zhang Jie and Chen Dongdong. 2010. The Characteristics and Dynamical Factors of Chinese Inbound Tourist Flow Network. Acta Geographica Sinica, 65(8): 1013-1024. ]
|
刘军. 2004. 整体网分析. 上海:格致出版社. [Liu Jun. 2004. Overall Network Analysis. Shanghai: Gezhi Publishing House. ]
|
刘军胜,马耀峰. 2013. 西部各省区入境游客集聚扩散空间转移态势分析. 陕西师范大学学报(自然科学版),41(1):88-94. [Liu Junsheng and Ma Yaofeng. 2013. Research on the Spatial Transfer Situation of Inbound Tourist Flows in Western Provinces of China. 2013. Journal of Shanxi Normal University (National Science Edition), 41(1): 88-94. ]
|
刘军胜,马耀峰. 2017. 基于发生学与系统论的旅游流与目的地供需耦合成长演化与驱动机制研究——以西安市为例. 地理研究,36(8):1583-1600. [Liu Junsheng and Ma Yaofeng. 2017. The Evolution and Driving Mechanism of the Supply and Demand Coupling about Tourism Flow and Destination System Based on the Genesis and System Theory: Taking Xi'an as an Example. Geographical Research, 36(8): 1583-1600. ]
|
马耀峰,王冠孝,张佑印. 2008. 中国典型区域入境旅游流空间场效应实证研究——以四川省为例. 资源科学,30(11):1747-1753. [Ma Yaofeng, Wang Guanxiao and Zhang Youyin. 2008. Empirical Research on Spatial Field Effects of Inbound Tourist Flows in China: Case Study of Sichuan Province. Resources Science, 30(11): 1747-1753. ]
|
Pforr C. 2006. Tourism policy in the making: An Australian Network Study. Annals of Tourism Research, 33(1): 87-108.
|
秦静, 李郎平, 唐鸣镝, 孙岩, 宋昕芮. 2018. 基于地理标记照片的北京市入境旅游流空间特征. 地理学报, 73(11):1556-1570. [Qin Jing, Li Langping, Tang Mingdi, Sun Yan, Song Xinrui. 2018. Exploring the Spatial Characteristics of Beijing Inbound Tourist Flow Based on Geotagged Photos. Acta Geographica Sinica, 73(11):1556-1570. ]
|
Shih H Y. 2006. Network Characteristics of Drive Tourism Destinations: An Application of Network Analysis in Tourism. Tourism Management, 27(5): 1029-1039.
|
唐顺铁,郭来喜. 1998. 旅游流体系研究. 旅游学刊,13(3):38-41. [Tang Shuntie and Guo Laixi. 1998. Study on Tourism Flow System. Tourism Tribune, 13(3): 38-41. ]
|
王德,顾家焕,晏龙旭. 2018. 上海都市区边界划分——基于手机信令数据的探索. 地理学报,73(10):1896-1909. [Wang De, Gu Jiahuan and Yan Longxu. 2018. Delimiting the Shanghai Metropolitan Area Using Mobile Phone Data. Acta Geographica Sinica, 73(10): 1896-1909. ]
|
Webster C and Ivanov S. 2015. Geopolitical Drivers of Future Tourist Flows. Journal of Tourism Futures, 1(1): 58-68.
|
Williams A V and Zelinsky W. 1970. On Some Patterns in International Tourist Flows. Economic Geography, 46(4): 549-567.
|
Wu L J and Cao G H. 2016. Seasonal SVR with FOA Algorithm for Single-Step and Multi-Step Ahead Forecasting in Monthly Inbound Tourist Flow. Knowledge-Based Systems, 110: 157-166.
|
吴姗姗,王录仓,刘海洋. 2020. 黄河流域旅游流网络结构特征研究. 经济地理,40(10):202-212. [Wu Shanshan, Wang Lucang and Liu Haiyang. 2020. Study on the Structural Characteristics of Tourism Flow Network in the Yellow River Basin. Economic Geography, 40(10): 202-212. ]
|
徐冬,黄震方,黄睿. 2019. 基于空间面板计量模型的雾霾对中国城市旅游流影响的空间效应. 地理学报,74(4):814-830. [Xu Dong, Huang Zhenfang and Huang Rui. 2019. The Spatial Effects of Haze on Tourism Flows of Chinese Cities: Empirical Research Based on the Spatial Panel Econometric Model. Acta Geographica Sinica, 74(4): 814-830. ]
|
闫闪闪,靳诚. 2019. 洛阳城区旅游流空间网络结构特征. 地理科学,39(10):1602-1611. [Yan Shanshan and Jin Chen. 2019. Characteristics of Spatial Network Structure of Tourist Flow in Urban Area of Luoyang. Scientia Geographica Sinica, 39(10): 1602-1611. ]
|
杨国良,张捷,艾南山,刘波. 2006. 旅游流齐夫结构及空间差异化特征:以四川省为例. 地理学报,61(12):1281-1289. [Yang Guoliang, Zhang Jie, Ai Nanshan and Liu Bo. 2006. Zipf Structure and Difference Degree of Tourist Flow Size System: A Case Study of Sichuan Province. Acta Geographica Science, 61(12): 1281-1289. ]
|
杨兴柱,顾朝林,王群. 2007. 南京市旅游流网络结构构建. 地理学报,62(6):609-620. [Yang Xingzhu, Gu Chaolin and Wang Qun. 2007. Urban Tourism Flow Network Structure Construction in Nanjing. Acta Geographica Sinica, 62(6): 609-620. ]
|
杨兴柱,顾朝林,王群. 2011a. 旅游流驱动力系统分析. 地理研究,30(1):23-36. [Yang Xingzhu, Gu Chaolin and Wang Qun. 2011a. Study on the Driving Force of Tourist Flows. Geographical Research, 30(1): 23-36. ]
|
杨兴柱,顾朝林,王群,卢松. 2011b. 城市旅游客流空间体系研究——以南京市为例. 经济地理,31(5):868-873. [Yang Xingzhu, Gu Chaolin, Wang Qun and Lu Song. 2011b. Spatial System of Urban Tourist Flows a Case Study of Nanjing. Economic Geography, 31(5): 868-873. ]
|
查晓莉,徐雨晨,陆林,赵海溶. 2019. 上海迪士尼国内旅游流地理分布与流动特征. 旅游学刊,34(6):58-73. [Zha Xiaoli, Xu Yuchen, Lu Lin and Zhao Hairong. 2019. Geographical Distribution and Flows of Chinese Tourists to Shanghai Disneyland. Tourism Tribune, 34(6): 58-73. ]
|
Zhang B R, Li N, Shi F and Law R. 2020. A Deep Learning Approach for Daily Tourist Flow Forecasting with Consumer Search Data. Asia Pacific Journal of Tourism Research, 25(3): 323-339.
|
Zhang Y S, Xu L and Wu T. 2019. The Impacts of Cultural Values on Bilateral International Tourist Flows: A Panel Data Gravity Model. Current Issues in Tourism, 22(8): 967-981.
|
章锦河,张捷,李娜,梁琳,刘泽华. 2005. 中国国内旅游流空间场效应分析. 地理研究,24(2):293-303. [Zhang Jinhe, Zhang Jie, Li Na, Liang Lin and Liu Zehua. 2005. An Analysis on Spatial Field Effect of Domestic Tourist Flows in China. Geographical Research, 24(2): 293-303. ]
|
郑鹏,马耀峰,王洁洁,李君轶,杨敏. 2010. 基于“推—拉”理论的美国旅游者旅华流动影响因素研究. 人文地理,25(5):112-117. [Zheng Peng, Ma Yaofeng, Wang Jiejie, Li Junyi and Yang Min. 2010. A Study of The Influencing Factors of the Inbound Tourists From the U.S.A Based on “Push-Pull” Theory. Human Geography, 25(5): 112-117. ]
|
Zheng W M, Zhou R, Zhang Z M, Zhong Y H, Wang S R, Wei S R and Ji H P. 2019. Understanding the Tourist Mobility Using GPS: How Similar are the Tourists?. Tourism Management, 71: 54-66.
|
郑嬗婷,陆林,陈浩. 2015. 长江三角洲团队旅游者区内游空间网络结构研究——基于旅行社推荐线路. 资源科学,37(12):2371-2380. [Zheng Shanting, Lu Lin and Chen Hao. 2015. Team Tourist Flow Spatial Networks in The Yangtze River Delta Based on The Line Recommended by Travel Agencies. Resources Science, 37(12): 2371-2380. ]
|
钟士恩,张捷,韩国圣,王岚,张宏磊. 2010. 旅游流空间模式基本理论:问题分析及其展望. 人文地理,25(2):31-36. [Zhong Shi’en, Zhang Jie, Wang Lan and Zhang Honglei. 2010. Spatial Patterns Tourist Flow Problems and Prospects. Human Geography, 25(2): 31-36. ]
|
Zhu L, Lim C and Xie W J. 2018. Modelling Tourist Flow Association for Tourism Demand Forecasting. Current Issues in Tourism, 21(8): 902-916.
|
/
〈 |
|
〉 |