Structure and Influencing Factors of the Global Cooperation Network of E-Sports Teams
Received date: 2022-12-07
Revised date: 2023-03-18
Online published: 2023-05-08
With the progress of information technology and the transformation of the global economy, the digital economy is increasingly showing rapid growth and is becoming a key force in restructuring global factor resources, the global economic structure, and the global competitive landscape. E-sports, which is an emerging cultural industry and sport, has great significance in promoting cultural exchanges among countries and enhancing their respective national soft power. Presently, owing to its professionalization, internationalization, and ecologization, e-sports enables broader and multidimensional connections between game participants. However, e-sports cooperation networks based on virtual communities have not yet received widespread attention. Therefore, this study uses the information database of the participating teams of three international e-sports events, namely, the League Of Legends World Championship, The International DOTA2 Championships, and the CS: GO Major, to explore the structure of transnational e-sports team networks and their evolution from a theoretical perspective of virtual communities. This study uses the social network analysis and the gravitational model methods to reveal the multidimensional proximity and national attributes that influence the e-sports cooperative network patterns. The results show that first, the spatial evolution of the global e-sports cooperation network shows rapid expansion and low density, weak association, and strong dynamic network characteristics. The number of nodes increases rapidly while the network density shows a fluctuating decrease. This indicates that the development of Internet technology and the increasing popularity of e-sports have drawn increasingly more countries to participate in international e-sports activities, and the node connection of the e-sports cooperation network tends to be decentralized as a whole. Second, the global e-sports cooperation network has evolved into five associations representing geographical regions: the European associations with Denmark, Sweden, Finland, and Germany as the core, the Asia-Pacific associations with China and South Korea as the main partners, the Commonwealth of Independent States associations with Russia and Ukraine as the main partners, the Latin American associations with Peru and Argentina, as the main partners, and the Intercontinental associations with the United States and Canada as the main partners. Third, the spatial structure of the global e-sports cooperation network is influenced by the interrelationship between countries and their respective industrial bases. Social and organizational proximities drive the formation of e-sports cooperation networks, whereas geographical and cultural proximities do not significantly affect e-sports team cooperation. The interaction between geographical proximity and social proximity on the intensity of e-sports cooperation reflects a substitution effect; scientific research expenditure, e-sports revenue, and e-sports strength are the key elements affecting countries' importance in e-sports cooperation networks. Conversely, economic scale and general factors such as economic size and education level do not have significant effects on global e-sports team cooperation. This reflects the uniqueness of the e-sports industry in a digital economy. This study contributes to the research on the reconfiguration of industrial organization networks driven by the digital economy. Furthermore, this study provides a reference for making China's e-sports industry internationally competitive by improving its e-sports training system.
Huali Qu , Yuan Zhang , Jinliao He , Xu Zhang . Structure and Influencing Factors of the Global Cooperation Network of E-Sports Teams[J]. Tropical Geography, 2023 , 43(4) : 636 -645 . DOI: 10.13284/j.cnki.rddl.003656
表1 电竞赛事合作网络结构测度指标Table 1 Measurement of the structure of the e-sports cooperative network |
年份 | 网络规模 | 集聚性 | 度中心性 | |||||
---|---|---|---|---|---|---|---|---|
节点数 | 边数 | 图密度 | 直径 | 平均聚类系数 | 平均度 | |||
2013 | 20 | 46 | 0.242 | 7 | 0.553 | 4.60 | ||
2014 | 25 | 52 | 0.173 | 5 | 0.672 | 4.16 | ||
2015 | 33 | 73 | 0.138 | 4 | 0.739 | 4.42 | ||
2016 | 33 | 72 | 0.136 | 6 | 0.72 | 4.36 | ||
2017 | 51 | 127 | 0.100 | 6 | 0.716 | 4.98 | ||
2018 | 48 | 142 | 0.126 | 6 | 0.664 | 5.92 | ||
2019 | 50 | 167 | 0.125 | 5 | 0.657 | 6.68 | ||
2020 | 47 | 130 | 0.120 | 5 | 0.673 | 5.53 |
表2 变量描述性统计与相关性分析Table 2 Descriptive statistics and correlation analysis of variables |
变量 | 合作 数量 | 地理 邻近性 | 社会 邻近性 | 组织 邻近性 | 文化 邻近性 |
---|---|---|---|---|---|
合作数量 | 1.000 | — | — | — | — |
地理邻近性 | -0.034 | 1.000 | — | — | — |
社会邻近性 | 0.551 | -0.054 | 1.000 | — | — |
组织邻近性 | 0.267 | 0.039 | 0.279 | 1.000 | — |
文化邻近性 | 0.066 | -0.080 | 0.255 | 0.170 | 1.000 |
观测值 | 516 | 516 | 516 | 516 | 516 |
平均值 | 2.109 | 9.062 | 0.081 | 0.523 | 0.103 |
标准差 | 4.241 | 0.633 | 0.105 | 0.500 | 0.304 |
最小值 | 1 | 6.494 | 0.011 | 0.000 | 0.000 |
最大值 | 22 | 9.888 | 1.000 | 1.000 | 1.000 |
方差膨胀因子 | — | 1.01 | 1.14 | 1.10 | 1.08 |
表3 全球电竞合作网络负二项式回归结果Table 3 Negative binomial regression result of the global e-sports cooperative network |
变量类型 | 变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|---|
国家i电竞人员数 | — | 0.016***(6.07) | 0.017***(7.11) | 0.016***(7.04) | 0.016***(7.00) | 0.016***(7.05) |
国家j电竞人员数 | — | 0.013***(4.80) | 0.016***(6.52) | 0.015***(6.52) | 0.015***(6.04) | 0.015***(6.51) |
地理邻近性 | DIS ij | -0.000(-1.43) | -0.077(-1.46) | -0.084(-1.61) | -0.084(-1.61) | 0.001(0.02) |
社会邻近性 | SOC ij | — | 3.034***(13.02) | 2.737***(11.66) | 2.752***(11.48) | 9.827***(2.98) |
组织邻近性 | ORG ij | — | — | 0.257***(3.53) | 0.260***(3.54) | 0.253***(3.39) |
文化邻近性 | COL ij | — | — | — | -0.037(-0.34) | -0.037(-0.14) |
地理*社会 | DIS*SOC | — | — | — | — | -0.767**(-2.15) |
组织*文化 | ORG*COL | — | — | — | — | -0.066(-0.22) |
常数项 | Constant | 13.499(0.04) | 15.762(0.11) | 16.008(0.13) | 15.788(0.13) | 14.701(0.13) |
样本量/个 | Observations | 516 | 516 | 516 | 516 | 516 |
Prob>chi2 | — | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 |
Log likelihood | — | -850.488 4 | -778.333 0 | -772.174 8 | -772.118 1 | -769.860 5 |
|
表4 全球电竞合作网络度中心性负二项式回归结果Table 4 Negative binomial regression result of the degree centrality of global e-sports cooperative network |
变量类型 | 变量 | 模型1 |
---|---|---|
经济规模 | GDP | -0.030(-1.48) |
电竞收入 | INC | 0.115***(3.77) |
科研支出 | SCI | 0.324**(2.41) |
电竞实力 | E-STR | 0.021***(8.26) |
受教育程度 | EDU | -0.181(-1.36) |
常数项 | Constant | 2.657*(1.81) |
Observations | — | 249 |
Number of code | — | 53 |
Prob > chi2 | — | 0.000 0 |
Log likelihood | — | -522.437 11 |
1 http://www.rddl.com.cn/attached/file/20210429/20210429161832_124.pdf
2 http://www.gov.cn/zhengce/content/2018-10/11/content_5329516.htm
3 https://lol.qq.com/main.shtml
4 https://www.dota2.com.cn/
5 https://liquipedia.net/
6 http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp
7 https://data.worldbank.org/
8 https://www.esportsearnings.com/
9 http://sg.mofcom.gov.cn/article/dtxx/202012/20201203025675.shtm
作者贡献声明:
曲华丽:数据分析、研究框架确定、论文撰写与修改;
张 源:讨论形成论文框架,参与论文指导与后期修改;
何金廖:提出研究思路、提供理论指导,讨论形成论文框架;
张 旭:提炼主题、理论提升,参与论文指导与修订完善。
Aslesen H W, Martin R, and Sardo S. 2019. The Virtual is Reality! On Physical and Virtual Space in Software Firms' Knowledge Formation. Entrepreneurship & Regional Development, 31(9/10): 669-682.
|
Broekel T, and Boschma R. 2012. Knowledge Networks in the Dutch Aviation Industry. Journal of Economic Geography, 12(2): 409-433.
|
Boschma R A. 2005. Proximity and Innovation: A Critical Assessment. Regional Studies, 39(1): 61-74.
|
曹兴,宋长江. 2017. 认知邻近性、地理邻近性对双元创新影响的实证研究. 中国软科学,(4):120-131.
Cao Xing, and Song Changjiang. 2017. Impact of Geographical Proximity and Cognitive Proximity on Ambidextrous Innovation of Technological Innovation Network. China Soft Science, (4): 120-131.
|
蔡晓璐. 2020. “新冠肺炎”疫中我国文化产业的发展特征与疫后格局重组. 艺术评论,(5):56-65.
Cai Xiaolu. 2020. Development Characteristics of China's Cultural Industry Under Fighting Against "Novel Coronavirus Pneumonia" and Pattern Reorganization After It. Arts Criticism, (5): 56-65.
|
Centola D, and Arnout V. 2015. Choosing Your Network: Social Preferences in an Online Health Community. Social Science & Medicine, 125: 19-31.
|
Chaminade C, Martin R, and Mckeever J. 2021. When Regional Meets Global: Exploring the Nature of Global Innovation Networks in the Video Game Industry in Southern Sweden. Entrepreneurship and Regional Devel Opment, 33(1/2): 131-146.
|
Chao L L. 2017. "You Must Construct Additional Pylons": Building a Better Framework for Esports Governance. Fordham Law Review, 86(2): 738-765.
|
Choi S. 2011. Core-Periphery, New Clusters, or Rising Stars?: International Scientific Collaboration Among "Advanced" Countries in the Era of Globalization. Scientometrics, 90(1): 25-41.
|
Czamanski D, and Broitman D. 2017. Information and Communication Technology and the Spatial Evolution of Mature Cities. Socio-Economic Planning Sciences, 58: 30-38.
|
董晓松,尚会永,姜旭平. 2019. 基于文化与地理双重互动的互联网消费增长空间计量研究. 中国软科学,(4):70-78.
Dong Xiaosong, Shang Huiyong, and Jiang Xuping. 2019. An Online Consumption Growth Empirical Study Based on the Culture and Geography Spatial Multi-Interaction. China Soft Science, (4): 70-78.
|
Falck O, Heblich S, Lameli A, and Suedekum J. 2012. Dialects, Cultural Identity, and Economic Exchange. Social Science Electronic Publishing,72(2/3): 225-239.
|
Hallmann K, and Giel T. 2018. ESports-Competitive Sports or Recreational Activity?. Sport Management Review, 21(1): 14-20.
|
Hedlund D P. 2021. A Typology of Esport Players. Journal of Global Sport Management, (2): 1-18.
|
何金廖,曾刚. 2019. 城市舒适性驱动下的创意产业集聚动力机制——以南京品牌设计产业为例. 经济地理,39(3):134-142,161.
He Jinliao, and Zeng Gang. 2019. Dynamic Mechanism of Creative Industry Agglomeration under the Driving of Urban Amenities: A Case Study of Brand Design Industry in Nanjing. Economic Geography, 39(3): 134-142, 161.
|
Hong W, and Su Y. 2013. The Effect of Institutional Proximity in Non-Local University-Industry Collaborations: An Analysis Based on Chinese Patent Data. Research Policy, 42(2): 454-464.
|
黄冠维,洪晓文,赵大营. 2021. 虚拟社群网络结构及网络沟通情绪的研究. 中国软科学,(S1):108-115.
Huang Guanwei, Hong Xiaowen, and Zhao Daying. 2021. Research on Network Structure and Network Communication Emotion of the Virtual Community. China Soft Science,(S1): 108-115.
|
刘承良,桂钦昌,段德忠,殷美元. 2017. 全球科研论文合作网络的结构异质性及其邻近性机理.地理学报,72(4):737-752.
Liu Chengliang, Gui Qinchang, Duan Dezhong, and Yin Yuan. 2017. Structural Heterogeneity and Proximity Mechanism of Global Scientific Collaboration Network Based on Co-Authored Papers. Acta Geographica Sinica, 72(4): 737-752.
|
Jenny S E, Manning R D, Keiper M C, and Olrich T W. 2016. Virtual(ly) Athletes: Where ESports Fit within the Definition of "Sport". Quest, 69(1): 1-18.
|
Koh J, and Kim Y G. 2003. Sense of Virtual Community: A conceptual Framework and Empirical Validation. International Journal of Electronic Commerce, 8(2): 75-94.
|
梁枢,梁伟. 2019.电子竞技国际研究热点与发展趋势的文献计量分析. 成都体育学院学报,45(2):7-14.
Liang Shu, and Liang Wei. 2019. Research on Hotspots and Development Trend of International ESport Literatures. Journal of Chengdu Sport University, 45(2): 7-14.
|
李琳,雒道政. 2013. 多维邻近性与创新:西方研究回顾与展望. 经济地理,33(6):1-7,41.
Li Lin, and Luo Daozheng. 2013. Multi-Proximity and Innovation: The Retrospect and Prospect on Western Researches. Economic Geography, 33(6): 1-7, 41.
|
刘劲松. 2016. 基于社会网络分析的世界天然气贸易格局演化. 经济地理,36(12):89-95.
Liu Jinsong. 2016. Evolution of World Natural Gas Trade Pattern Based on Social Network Analysis. Economic Geography, 36(12): 89-95.
|
Madeleine A, Wladimir A, and Sandrine P. 2008. Les déTerminants éConomiques De La Performance Olympique: préVision Des méDailles Qui Seront GagnÉEs Aux Jeux De PÉKin. Revue Déconomie Politique, 118(2): 135-169.
|
Malinen S. 2015. Understanding User Participation in Online Communities: A Systematic Literature Review of Empirical Studies. Computers in Human Behavior, 46(5): 228-238.
|
马中红,刘泽宇. 2020. “玩”出来的新职业——国内电子竞技职业发展考察. 中国青年研究,(11):20-28.
Ma Zhonghong, and Liu Zeyu. 2020. "Play" out of the New Profession-Domestic E-Sports Career Development Study. China Youth Study,(11): 20-28.
|
潘峰华,赖志勇,葛岳静. 2013. 社会网络分析方法在地缘政治领域的应用. 经济地理,33(7):15-21.
Pan Fenghua, Lai Zhiyong, and Ge Yuejing. 2013. Social Network Analysis in Geo-Politics Studies. Economic Geography, 33(7): 15-21.
|
Parshakov P, and Zavertiaeva M. 2015. Success in ESports: Does Country Matter?. (2016-03-02) [2022-10-15]. http://papers.ssrn.com/abstract=2662343.
|
Parshakov P, Coates D, and Zavertiaeva M. 2018. Is Diversity Good or Bad? Evidence from ESports Teams Analysis. Applied Economics, 50(47): 5062-5073.
|
Rothaermel F T, and Sugiyama S. 2001. Virtual Internet Communities and Commercial Success: Individual and Community-Level Theory Grounded in the Atypical Case of TimeZone.com. Journal of Management, 27(3): 297-312.
|
Saiz-Alvarez J M, Palma-Ruiz J M, Valles-Baca H G, and Fierro-Ramírez L A. 2021. Knowledge Management in the Esports Industry: Sustainability, Continuity, and Achievement of Competitive Results. Sustainability, 13(19): 1-20.
|
Scherngell T, and Hu Y. 2011. Collaborative Knowledge Production in China: Regional Evidence from a Gravity Model Approach. Regional Studies, 45(6): 755-772.
|
沈鸿雁,葛琦. 2016. 新媒体的另一种知识生产与文化实践——欧美电子游戏出版的启示. 传媒,(21):52-53.
Shen Hongyan, and Ge Qi. 2016. Alternative Knowledge Production and Cultural Practices in New Media-Insights from Video Game Publishing in Europe and America. Media, (21): 52-53.
|
Shukla P, and Drennan J. 2018. Interactive Effects of Individual- and Group-Level Variables on Virtual Purchase Behavior in Online Communities. Information & Management, 55(5): 598-607.
|
Sirola A, Savela N, Savolainen I, Markus K, and Oksanen A. 2021. The Role of Virtual Communities in Gambling and Gaming Behaviors: A Systematic Review. Journal of Gambling Studies, 37(3): 165-187.
|
Steinkuehler C. 2020. Esports Research: Critical, Empirical, and Historical Studies of Competitive Videogame Play. Games and Culture, 15(1): 3-8.
|
孙中伟,王杨,田建文. 2014. 地理学空间研究的转向:从自然到社会、现实到虚拟. 地理与地理信息科学,30(6):112-116.
Sun Zhongwei, Wang Yang, and Tian Jianwen. 2014. Turns of Geography Space Research: From Natural Space to Social Space and Realistic Space to Virtual Space. Geography and Geo-Information Science, 30(6): 112-116.
|
Trepte S, Reinecke L, and Juechems K. 2012. The Social Side of Gaming: How Playing Online Computer Games Creates Online and Offline Social Support. Computers in Human Behavior, 28(3): 832-839.
|
Wagner P. 2006. Statements of Apology: A Matter of Ethics. South Dakota Journal of Medicine, 59(10): 437-438.
|
王庆喜,胡志学. 2021. 多维邻近下浙江城市创新网络演化及其机制研究. 地理科学,41(8):1380-1388.
Wang Qingxi, and Hu Zhixue. 2021. Urban Innovation Network of Zhejiang from the Perspective of Multidimensional Proximities. Scientia Geographica Sinica, 41(8): 1380-1388.
|
文彤,邱佳佳. 2018. 旅游虚拟社区网络演化特征分析——以“马蜂窝”为例. 地理与地理信息科学,34(6):119-126.
Wen Tong, and Qiu Jiajia. 2018. Analysis on Network Evolution Characteristics of Tourism Virtual Community: A Case Study of Mafengwo Website. Geography and Geo-Information Science, 34(6): 119-126.
|
Xue H, Newman J I, and Du J. 2019. Narratives, Identity and Community in Esports. Leisure Studies, 38(6): 845-861.
|
张凯煌,千庆兰. 2021. 中国新能源汽车产业创新网络特征及其多维邻近性成因. 地理研究,40(8):2170-2187.
Zhang Kaihuang, and Qian Qinglan. 2021. Characteristics and Proximities Mechanism of China's New Energy Vehicle Industry Innovation Network. Geographical Research, 40(8): 2170-2187.
|
詹绍文,朱一鑫,程哲,窦世斌. 2021. 电竞产业空间格局演化及其影响因素——以上海市为例. 热带地理,41(2):303-314.
Zhan Shaowen, Zhu Yixin, Cheng Zhe, and Dou Shibin. 2021. Spatio-Temporal Evolution and Influencing Factors of E-Sports Industry: A Case Study of Shanghai. Tropical Geography, 41(2): 303-314.
|
赵炎,王琦,郑向杰. 2016. 网络邻近性、地理邻近性对知识转移绩效的影响. 科研管理,37(1):128-136.
Zhao Yan, Wang Qi, and Zheng Xiangjie. 2016. Impact of Network Vicinity and Geographical Proximity to Knowledge Transfer Performance. Science Research Management, 37(1): 128-136.
|
/
〈 |
|
〉 |