Spatial Structure of Tourist Flow in Sanya and Tourists' Visiting Characteristics Based on Anchor Theory
Received date: 2023-04-06
Revised date: 2023-08-07
Online published: 2024-02-08
The spatial structure of tourist flow represents the tourists' flow pattern, shows the difference of tourism resources, and provides the basis for the balance and sustainable development of tourism. Based on the digital footprint data obtained from the online travel notes on Qunar.com, this article describes and analyzes the spatial structure of tourism flow in Sanya City using the research methods of flow statistics, association rule mining, and social network analysis under the framework of anchor theory; further, it condenses the characteristics of different types of tourists at different time scales. The key findings include: (1) The spatial structure of Sanya's tourism flow is affected by the popularity of scenic spots, showing a flow pattern of "one core and two cores" and several core paths; the core area is located along the coastline, showing the characteristics of coastal tourism city. (2) In the spatial structure of Sanya's tourist flow, the distribution of core nodes is uneven, and the phenomenon of structural holes is obvious, showing the spatial pattern of uneven distribution of scenic spots and fierce competition among scenic spots. (3) In the structure network of Sanya's tourist flow, most tourists are medium-scale travelers, followed by small-scale travelers and large-scale travelers. (4) The tourist attraction system of Sanya's tourist flow is hierarchically distributed and has multiple anchor attractions. Different anchor attractions have different attractions to tourists of different types and time, except for beach tourist destinations and island areas. Therefore, targeted marketing for different types of tourists is a challenge for the future development of Sanya's tourism. In this article, the anchor point theory is introduced into the study of tourism flow. Based on the flow direction statistics, association rule mining and field investigation, the rules of the anchor point selection of tourism flow are established, verified, and supplemented by the social network analysis method. Theoretical support and quantitative data support complement each other. The application of anchor theory and association rule mining not only enriches the theoretical framework in the field of tourism flow, but it also scientifically determines the anchor points of the tourism flow's structure network. This is helpful to understand tourist behavior and mode, and it can provide targeted suggestions for the precision marketing of tropical coastal tourist cities.
Yi Li , Fengxia Wang . Spatial Structure of Tourist Flow in Sanya and Tourists' Visiting Characteristics Based on Anchor Theory[J]. Tropical Geography, 2024 , 44(2) : 326 -338 . DOI: 10.13284/j.cnki.rddl.003796
表1 关联规则挖掘结果Table 1 Association rule mining results |
规则 | 支持度(X)/% | 支持度(X,Y)/% | 可信度/% | 提升度 |
---|---|---|---|---|
亚龙湾热带天堂森林公园==> 亚龙湾 | 23.66 | 20.11 | 85 | 1.33 |
蜈支洲岛∧亚龙湾热带天堂森林公园==>亚龙湾 | 4.80 | 3.98 | 83 | 1.3 |
蜈支洲岛∧海棠湾==>亚龙湾 | 4.80 | 3.50 | 73 | 1.15 |
三亚湾∧海棠湾==>亚龙湾 | 3.89 | 2.80 | 72 | 1.13 |
海棠湾==>亚龙湾 | 29.94 | 21.26 | 71 | 1.12 |
椰梦长廊==>三亚湾 | 26.74 | 18.72 | 70 | 1.33 |
蜈支洲岛∧大东海==>亚龙湾 | 6.74 | 4.65 | 69 | 1.09 |
三亚湾∧蜈支洲岛==>亚龙湾 | 7.20 | 4.90 | 68 | 1.08 |
亚龙湾∧椰梦长廊==>三亚湾 | 6.29 | 4.21 | 67 | 1.27 |
蜈支洲岛∧天涯海角==>亚龙湾 | 5.37 | 3.55 | 66 | 1.04 |
天涯海角==>亚龙湾 | 28.00 | 18.20 | 65 | 1.02 |
大东海==>亚龙湾 | 36.00 | 23.40 | 65 | 1.02 |
三亚湾==>亚龙湾 | 53.26 | 34.62 | 65 | 1.02 |
三亚湾∧大东海==>亚龙湾 | 7.89 | 5.05 | 64 | 1.01 |
三亚免税==>三亚湾 | 19.20 | 12.10 | 63 | 1.2 |
椰梦长廊==>亚龙湾 | 26.74 | 16.85 | 63 | 1 |
大东海==>三亚湾 | 36.00 | 21.96 | 61 | 1.17 |
亚龙湾∧大东海==>三亚湾 | 10.29 | 6.27 | 61 | 1.16 |
三亚湾∧椰梦长廊==>亚龙湾 | 8.34 | 5.09 | 61 | 0.96 |
三亚免税==>亚龙湾 | 19.20 | 11.52 | 60 | 0.95 |
图6 三亚旅游流分尺度时间异质性特征 Fig.6 Characteristics of time heterogeneity of tourism flows in Sanya at scale |
1 资源来源:三亚市旅游和文化广电体育局. lwj.sanya.gov.cn。
李 屹:数据收集、整理、处理与可视化,文章的写作;
王凤霞:文章的指导、修改及资金支持。
Bob M and Gigi L. 2008. Movement Patterns of Tourists within a Destination. Tourism Geographies, 10(3): 355-374.
|
曹芳东,黄震方,黄睿,徐敏. 2021. 江苏省高速公路流与景区旅游流的空间关联及其耦合路径. 经济地理,41(1):232-240.
Cao Fangdong, Huang Zhenfang, Huang Rui, and Xu Min. 2021. Spatial Correlation and Coupling Path between Expressway Flow and Scenic Tourist Flow in Jiangsu Province. Economic Geography, 41(1): 232-240.
|
陈芳姝,王丽华. 2022. 基于“认知-情感”理论的达古冰川景区旅游形象感知研究. 黑龙江生态工程职业学院学报,35(2):44-48.
Chen Fangshu and Wang Lihua. 2022. Research on Tourism Image Perception of Dagu Glacier Scenic Area Based on "Cognitive-Emotional" Theory. Journal of Heilongjiang Vocational College of Ecological Engineering, 35(2): 44-48.
|
陈金华,杨雪可. 2021. 港珠澳大桥对粤港澳大湾区旅游流网络的影响. 华侨大学学报(哲学社会科学版),(1):44-53.
Chen Jinhua and Yang Xueke. 2021. Influence of Hong Kong-Zhuhai-Macao Bridge on Tourist Flow Network in Guangdong-Hong Kong-Macao Greater Bay Area. Journal of Huaqiao University (Philosophy and Social Sciences), (1): 44-53.
|
Cheng J, Jianquan C, and Jing X. 2018. Using User-Generated Content to Explore the Temporal Heterogeneity in Tourist Mobility. Journal of Travel Research, 57(6): 779-791.
|
程昌秀,史培军,宋长青,高剑波. 2018. 地理大数据为地理复杂性研究提供新机遇. 地理学报,73(8):1397-1406.
Cheng Changxiu, Shi Peijun, Song Zhangqing, and Gao Jianbo. 2018. Geographical Big Data Provides New Opportunities for Geographical Complexity Research. Geographical Journal, 73(8): 1397-1406.
|
程雪兰,方叶林,苏雪晴,李经龙. 2021. 中国东部沿海5大城市群旅游流网络结构空间分布特征研究. 地理科学进展,40(6):948-957.
Cheng Xuelan, Fang Yelin, Su Xueqing, and Li Jinglong. 2021. Study on the Spatial Distribution Characteristics of Tourist Flow Network Structure in the Five Major Urban Agglomerations in Eastern China. Geographical Science Progress, 40(6): 948-957.
|
Daniel J B, Kenneth D B, and Bruce C S. 1998. Relationships and Unethical Behavior: A Social Network Perspective. The Academy of Management Review, 23(1): 14-31.
|
David K and Ronald S B. 1995. Structural Holes: The Social Structure of Competition. Administrative Science Quarterly, 40(2): 350.
|
Debbage K G. 1991. Spatial Behavior in a Bahamian Resort. Annals of Tourism Research, 18(2): 251-268.
|
邓社军,宇泓儒,陆曹烨,刘冬梅,唐玉成,白桦. 2019. 基于手机信令数据的旅游交通出行网络特性. 交通运输研究,5(6):28-35.
Deng Shejun, Yu Hongru, Lu Caoye, Liu Dongmei, Tang Yucheng, and Bai Hua. 2019. Characteristics of Tourism Transportation Network Based on Mobile Phone Signaling data. Transportation Research, 5(6): 28-35.
|
杜家禛,靳诚,徐菁,周玉翠. 2021. 长江三角洲虚拟旅游流空间格局及其影响因素分析. 南京师大学报(自然科学版),44(2):48-54.
Du Jiazhen, Jin Cheng, Xu Jing, and Zhou Yucui. 2021. Characteristics of Tourism Transportation Network Based on Mobile Phone Signaling Data. Transportation Research, 44(2): 48-54.
|
杜嵘,陈洁萍. 2022. 基于社会网络分析方法的南京主城边缘带绿色空间景观系统评估. 中国园林,38(4):68-73.
Du Rong and Chen Jieping. 2022. Landscape System Assessment of Green Space in Urban Fringe of Nanjing Based on Social Network Analysis. China Gardens, 38(4): 68-73.
|
高楠,张新成,王琳艳. 2020. 中国红色旅游网络关注度时空特征及影响因素. 自然资源学报,35(5):1068-1089.
Gao Nan, Zhang Xincheng, and Wang Linyan. 2020. The Spatial and Temporal Characteristics and Influencing Factors of China's Red Tourism Network Attention. Journal of Natural Resources, 35(5): 1068-1089.
|
贺小荣,徐海超,夏凡. 2021. 红色旅游流的空间网络结构及其影响因素——以遵义市为例. 旅游论坛,14(6):61-71.
He Xiaorong, Xu Haichao, and Xia Fan. 2021. The Spatial Network Structure of Red Tourism Flow and Its Influencing Factors-Taking Zunyi City as an Example. Tourism Forum, 14(6): 61-71.
|
黄松,王梦飞,李燕林. 2021. 基于在线平台的旅游信息流流空间特征——以珠江—西江经济带核心城市为例. 广西师范大学学报(自然科学版),39(2):162-173.
Huang Song, Wang Mengfei, and Li Yanlin. 2021. Spatial Characteristics of Tourism Information Flow Based on Online Platform: A Case Study of Core Cities in the Zhujiang-Xijiang Economic Belt. Journal of Guangxi Normal University (Natural Science Edition), 39(2): 162-173.
|
Lawrence J B. 2015. The Structures and Flows of a Large Tourist Itinerancy Network. Current Issues in Tourism, 21(1): 103-122.
|
李海杰,苗蕾,聂磊,佟璐. 2022. 基于关联规则和主成分分析的高铁旅客购票行为特征研究. 铁道科学与工程学报,20(6):1-11.
Li Haijie, Miao Lei, Nie Lei, and Tong Lu. 2022. Study on the Characteristics of High-Speed Railway Passengers' Ticket Purchase Behavior Based on Association Rules and Principal Component Analysis. Journal of Railway Science and Engineering, 20(6): 1-11.
|
李俊良. 2020. 科研合作网络特征分析及比较——以我国“双一流”大学与美国知名大学为例. 情报探索,(4):35-43.
Li Junliang. 2020. Analysis and Comparison of Scientific Collaboration Network Characteristics: A Case Study of China's Double First-Class Universities and Famous American Universities. Intelligence Exploration, (4): 35-43.
|
李康康,戢晓峰. 2020. 云南省团队游空间结构及其聚散效应研究. 旅游研究,12(3):41-51.
Li Kangkang and Ji Xiaofeng. 2020. Research on the Spatial Structure of Team Tourism in Yunnan Province and Its Clustering Effect. Tourism Research, 12(3): 41-51.
|
李磊,陆林,穆成林,孙小龙. 2019. 高铁网络化时代典型旅游城市旅游流空间结构演化——以黄山市为例. 经济地理,39(5):207-216.
Li Lei, Lu Lin, Mu Chenglin, and Sun Xiaolong. 2019. The Spatial Structure Evolution of Tourism Flow in Typical Tourist Cities in the Era of High-Speed Rail Network-Taking Huangshan City as an Example. Economic Geography, 39(5): 207-216.
|
李磊,陶卓民,赖志城,李涛,琚胜利. 2021. 长征国家文化公园红色旅游资源网络关注度及其旅游流网络结构分析. 自然资源学报,36(7):1811-1824.
Li Lei, Tao Zhuomin, Lai Zhicheng, Li Tao, and Ju Shengli. 2021. Analysis of Red Tourism Resources Network Attention and Tourist Flow Network Structure of Changzheng National Cultural Park. Natural Resources Journal, 36(7): 1811-1824.
|
刘军胜,马耀峰,刘焱序. 2021. 中国入境过夜游客目的地选择时空分异与城市类型识别. 旅游学刊,36(7):104-118.
Liu Junsheng, Ma Yaofeng, and Liu Yanxu. 2021. Spatial-Temporal Differentiation and Urban Type Identification of Inbound Overnight Tourist Destination Selection in China. Tourism Journal, 36(7): 104-118.
|
刘歆,吕博学,邢文路. 2021. “欧洲工业遗产之路”模式下京津冀区域工业遗产旅游开发研究. 工业建筑,51(10):217-224.
Liu Xin, Lu Boxue, and Xing Wenlu. 2021. Research on the Development of Industrial Heritage Tourism in Beijing-Tianjin-Hebei Region under the Mode of "European Industrial Heritage Road". Industrial Architecture, 51(10): 217-224.
|
刘耀林,刘启亮,邓敏,石岩. 2022. 地理大数据挖掘研究进展与挑战. 测绘学报,51(7):1544-1560.
Liu Yaolin, Liu Qiliang, Deng Min, and Shi Yan. 2022. Research Progress and Challenges of Geographic Big Data Mining. Journal of Surveying and Mapping, 51(7): 1544-1560.
|
卢淑莹,陶卓民,李涛,濮蓉,荣慧芳. 2021. 泛长三角区域入境游客空间格局与意象研究. 地理研究,40(1):263-278.
Lu Shuying, Tao Zhuomin, Li Tao, Pu Rong, and Rong Huifang. 2021. Research on the Spatial pattern And Image of Inbound Tourists in the Pan-Yangtze River Delta Region. Geographical Research, 40(1): 263-278.
|
马丽君,邓思凡. 2021. 省际入境与国内旅游流网络结构特征及比较分析. 地理与地理信息科学,37(5):133-142.
Ma Lijun and Deng Sifan. 2021. Structural Characteristics and Comparative Analysis of Interprovincial Inbound and Domestic Tourist Flow Networks. Geography and Geographic Information Science, 37(5): 133-142.
|
马丽君,刘聪. 2022. 上海迪士尼对长三角国内旅游流网络结构的影响——基于网络关注度的分析. 云南地理环境研究,34(2):1-10.
Ma Lijun and Liu Cong. 2022. The Impact of Shanghai Disney on the Structure of Domestic Tourism Flow Network in the Yangtze River Delta-Analysis Based on Network Attention. Yunnan Geographical Environment Research, 34(2): 1-10.
|
Marco A and Alberto A G. 2019. Flight Availability and International Tourism Flows. Annals of Tourism Research, 79(C): 102642-102642.
|
Naixia M, Yunhao Z, Teemu M, Tengfei Y, Jinwen J T, and Yan S. 2020. Tourists' Digital Footprint: The Spatial Patterns of Tourist flows in Qingdao, China. Tourism Management, 81: 104151.
|
裴韬,舒华,郭思慧,宋辞,陈洁,刘亚溪,王席. 2020. 地理流的空间模式:概念与分类. 地球信息科学学报,22(1):30-40.
Pei Tao, Shu Hua, Guo Sihui, Song Ci, Chen Jie, Liu Yaxi, and Wang Xi. 2020. Spatial Patterns of Geographic Flows: Concepts and Classifications. Journal of Earth Information Science, 22(1): 30-40.
|
秦静,李郎平,唐鸣镝,孙岩,宋昕芮. 2018. 基于地理标记照片的北京市入境旅游流空间特征. 地理学报,73(8):1556-1570.
Qin Jing, Li Langping, Tang Mingdi, Sun Yan, and Song Xinrui. 2018. Spatial Characteristics of Inbound Tourism Flows in Beijing Based on Geotagged Photos. Geography, 73(8): 1556-1570.
|
秦昆,喻雪松,周扬,张凯,刘东海,王其新,贾涛,肖锐,卢宾宾,许刚,余洋,孟庆祥. 2022. 全球尺度地理多元流的网络化挖掘及关联分析研究. 地球信息科学学报,24(10):1911-1924.
Qin Kun, Yu Xuesong, Zhou Yang, Zhang Kai, Liu Donghai, Wang Qixin, Jia Tao, Xiao Rui, Lu Binbin, Xu Gang, Yu Yang, and Meng Qingxiang. 2022. Research on Network Mining and Association Analysis of Global Scale Geographical Multivariate Flow. Journal of Geo-Information Science, 24(10): 1911-1924.
|
Reginald G G. 1978. Representing, Interpreting, and Using Cognized Environments. Papers of the Regional Science Association, 41(1): 168-204.
|
Sanghoon K, Gyehee L, Jinwon K, and Deukhee P. 2018. Identifying the Spatial Structure of the Tourist Attraction System in South Korea Using GIS and Network Analysis: An Application of Anchor-Point Theory. Journal of Destination Marketing & Management, 9: 358-370.
|
Stephen P B, Ajay M, Daniel J B, and Giuseppe L. 2009. Network Analysis in the Social Sciences. Science, 323(5916): 892-895.
|
苏建军,关丽,张毓. 2021. 丝绸之路经济带沿线国家旅游资源与入境旅游发展空间格局特征与差异. 世界地理研究,30(3):509-519.
Su Jianjun, Guan Li, and Zhang Yu. 2021. Spatial Pattern Characteristics and Differences of Tourism Resources and Inbound Tourism Development in Countries along the Silk Road Economic Belt. World Geography Research, 30(3): 509-519.
|
孙婧,吴忠才. 2022. 长三角城市群旅游流时空分异与溢出效应研究. 湖南理工学院学报(自然科学版),35(2):58-65.
Sun Jing and Wu Zhongcai. 2022. Study on Spatial-Temporal Differentiation and Spillover Effect of Tourism Flow in Yangtze River Delta Urban Agglomeration. Journal of Hunan University of Science and Technology (Natural Science Edition), 35(2): 58-65.
|
唐承辉,张衔春. 2022. 全球城市区域合作网络结构演变——以粤港澳大湾区为例. 经济地理,42(2):25-34.
Tang Chenghui and Zhang Xianchun. 2022. Evolution of Global Urban Regional Cooperation Network Structure: A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area. Economic Geography, 42(2): 25-34.
|
Walmsley D J and Jenkins J M. 1992. Tourism Cognitive Mapping of Unfamiliar Environments. Annals of Tourism Research, 19(2): 268-286.
|
王朝辉,汤陈松,乔浩浩,张伟,邢露雨. 2020. 基于数字足迹的乡村旅游流空间结构特征——以浙江省湖州市为例. 经济地理,40(3):225-233.
Wang Chaohui, Tang Chensong, Qiao Haohao, Zhang Wei, and Xing Luyu. 2020. The Spatial Structure Characteristics of Rural Tourism Flow Based on Digital Footprint: A Case Study of Huzhou City, Zhejiang Province. Economic Geography, 40(3): 225-233.
|
王金伟,王国权,刘乙,雷婷,孙洁,王欣. 2021. 井冈山红色旅游流时空分布及网络结构特征. 自然资源学报,36(7):1777-1791.
Wang Jinwei, Wang Guoquan, Liu Yi, Lei Ting, Sun Jie, and Wang Xin. 2021. Spatial-Temporal Distribution and Network Structure Characteristics of Red Tourism Flow in jinggangshan. Journal of Natural Resources, 36(7): 1777-1791.
|
Xi Y L, Fang W, Bihu W, Billy B, Kurt A S, and Zhihua X. 2012. A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: The Impact of the Olympic Games. International Journal of Tourism Research, 14(5): 469-484.
|
肖刚,李文明,章辰. 2020. 江西省旅游线路网络空间结构及影响因素研究. 地域研究与开发,39(5):88-92.
Xiao Gang, Li Wenming, and Zhang Chen. 2020. Spatial Structure and Influencing Factors of Tourist Route Network in Jiangxi Province. Regional Research and Development, 39(5): 88-92.
|
熊力,李华,刘大均,简代飞. 2021. 成都旅游流空间格局的季节差异研究. 旅游论坛,14(3):81-94.
Xiong Li, Li Hua, Liu Dajun, and Jian Daifei. 2021. Study on the Seasonal Difference of Spatial Pattern of Tourist Flow in Chengdu. Tourism Forum, 14(3): 81-94.
|
徐敏,黄震方,曹芳东,张郴. 2019. 基于大数据分析的城市旅游地网络结构特征及其演化模式——以新浪微博签到数据为例. 地理研究,38(4):937-949.
Xu Min, Huang Zhenfang, Cao Fangdong, and Zhang Chen. 2019. The Network Structure Characteristics and Evolution Model of Urban Tourism Destinations Based on Big Data Analysis: Taking Sina Weibo Check-in Data as an Example. Geographical Research, 38(4): 937-949.
|
闫闪闪,张河清,靳诚. 2021. 都市区国内旅游流网络空间关联特征. 热带地理,41(6):1313-1324.
Yan Shanshan, Zhang Heqing, and Jin Cheng. 2021. Spatial Correlation Characteristics of Domestic Tourism Flow Network in Metropolitan Area. Tropical Geography, 41(6): 1313-1324.
|
闫闪闪,徐红罡. 2023. 节庆事件对区域旅游流空间网络的影响效应和机制研究. 人文地理,38(1):181-192.
Yan Shanshan and Xu Honggang. 2023. Research on the Effect and Mechanism of Festival Events on the Spatial Network of Regional Tourism Flow. Human Geography, 38(1): 181-192.
|
杨兴柱,吴静. 2015. 南京市旅游流网络结构特征历时性比较. 旅游科学,29(4):35-46.
Yang Xingzhu and Wu Jing. 2015. A Diachronic Comparison of the Structural Characteristics of Tourist Flow Network in Nanjing. Tourism Science, 29(4): 35-46.
|
Yeong-Hyeon H. 2006. Multicity Trip Patterns. Annals of Tourism Research, 33(4): 1057-1078.
|
尹泽生,魏小安,汪黎明,陈田,牛亚菲,李宝田,潘肖澎,周梅,石建国. 2003. 旅游资源分类、调查与评价 GB/T 18972-2003. 北京:中华人民共和国国家质量监督检验检疫总局.
Yin Zesheng, Wei Xiaoan, Wang Liming, Chen Tian, Yafei Niu, Li Baotian, Pan Xiaopeng, Zhou Mei, and Shi Jianguo. 2003. Classification, Investigation and Evaluation of Tourism Resources GB/T 18972-2003. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
|
章锦河,张捷,李娜,梁琳,刘泽华. 2005. 中国国内旅游流空间场效应分析. 地理研究,24(2):293-303.
Zhang Jinhe, Zhang Jie, Li Na, Liang Lin, and Liu Zehua. 2005. Spatial Field Effect Analysis of Domestic Tourist Flow in China. Geographical Research, 24(2): 293-303.
|
周李,吴殿廷,虞虎,王永明,马腾,胡灿. 2020. 基于网络游记的城市旅游流网络结构演化研究——以北京市为例. 地理科学,40(2):298-307.
Zhou Li, Wu Dianting, Yu Hu, Wang Yongming, Ma Teng, and Hu Can. 2020. Research on the Evolution of Urban Tourism Flow Network Structure Based on Network Travel Notes: Taking Beijing as an Example. Geographical Science, 40(2): 298-307.
|
周裕祺,许艳,李冬花,蒋伟峰,吴锶梦,陆林. 2022. 黄山市旅游流网络结构特征研究——团队游与自助游的比较分析. 华中师范大学学报(自然科学版)),56(5:853-863.
Zhou Yuqi, Xu Yan, Li Donghua, Jiang Weifeng, Wu Simeng, and Lu Lin. 2022. Study on the Characteristics of Tourism Flow Network Structure in Huangshan City: Comparative Analysis of Team Tour and Independent Tour. Journal of Central China Normal University (Natural Science Edition), 56(5): 853-863.
|
朱冬芳,虞虎,刘青青,刘丽敏. 2021. 入藏旅游流网络结构特征与组织模式——基于团队游和自助游视角的比较分析. 地理科学进展,40(5):812-824.
Zhu Dongfang, Yu Hu, Liu Qingqing, and Liu Limin. 2021. The Network Structure characteristics and Organization Mode of Tourism Flow in Tibet: A Comparative Analysis Based on the Perspective of Team Tour and Independent Tour. Geographical Science Progress, 40(5): 812-824.
|
朱丽波. 2015. 科学合作网络的中心性分析. 图书馆学研究,(3):97-101.
Zhu Libo. 2015. Centrality Analysis of Scientific Cooperation Network. Library Science Research, (3): 97-101.
|
Zhuo L, Weiguo J, Wenjie W, Xuan L, and Yue D. 2019. Exploring Spatial-Temporal Change and Gravity Center Movement of Construction Land in the Chang-Zhu-Tan Urban Agglomeration. Journal of Geographical Sciences, 29(8): 1363-1380.
|
/
〈 |
|
〉 |