Temporal Heterogeneity and Impact Mechanism of Intercity Travel Time in the Yangtze River Delta Region
Received date: 2024-01-12
Revised date: 2024-03-28
Online published: 2024-05-08
Under the influence of information technology and high-speed transportation networks, which compress space and time, the region's population has achieved large-scale fluidity. Examining the temporal heterogeneity of intercity travel networks and its influencing mechanism can help optimize regional spatial organization and provide a scientific basis for regional integrated development. Based on Baidu migration data from January to April 2023, this study uses a PPML(Poisson Pseudo Maximum Likelihood) gravity model and interaction term testing to compare the scale, pattern, and influencing factors of intercity travel networks during weekdays, weekends, and holidays in the Yangtze River Delta region. The results indicate the following: 1) The intercity travel network in the Yangtze River Delta region exhibits temporal heterogeneity characteristics. During weekdays, intercity travel primarily consists of cross-city commuting and business trips, with the lowest daily average scale. This forms a V-shaped intercity travel structure covering Shanghai, southern Jiangsu, Northern Zhejiang, and Southern Anhui. The positive effects of destination city population size and economic status on intercity travel are enhanced. On weekends, intercity travel is dominated by business trips and leisure activities, and residents tend to take shorter trips, which means that intercity distances pose greater hindrances to intercity travel. During holidays, intercity travel is primarily for leisure and entertainment and for visiting friends and relatives, with the highest daily intensity. The promotional effect of destination city population size on intercity travel is weakened, and intercity travel is less hindered by intercity distances. Compared to the effects of geographical distance, economic status, and population size on the scale of intercity travel during weekdays, travel duration, or geographical distance, tends to pose a greater hindrance on weekends and a lesser hindrance during holidays. The promotional effect of economic status is intensified on weekends but diminishes during holidays. Meanwhile, the promotional effect of population size weakens both on weekends and during holidays. 2) Push-pull factors encompass the level of urban development and the incentives that trigger individual travel. In terms of urban development level, indicators such as population size, economic status, and industrial structure reflect the comprehensive strength and development status of a city, influencing its ability to serve as both a starting and destination point for intercity travel. From the perspective of various individual travel incentives, residents pay more attention to various urban resources such as income levels, public service quality, and tourism resources to meet their personal needs for production and living. The primary types of population movements vary across different time periods, shifting between cross-city commuting, business travel, and leisure and entertainment. As a result, the dominant factors among push-pull elements also change, leading to significant variations in the effectiveness of each factor. Intermediate obstacles are the key factors limiting intercity travel. On the one hand, while the level of integration in the Yangtze River Delta region continues to improve, and transportation facilities are gradually improving, geographical distance remains a crucial intermediate obstacle. On the other hand, administrative and cultural differences between different provinces increase residents' adaptation costs, forming "invisible barriers" that hinder cross-province population interactions. The hindrance posed by intermediate obstacles to intercity travel also varies across different travel periods. The effects of push-pull factors exhibit temporal heterogeneity. The small-world characteristics of the intercity travel network during weekdays are more evident, and the central city has a more prominent structural core status. On weekends, the geographical proximity of the intercity travel network improves, with close "center-hinterland" connections and enhanced inter-provincial boundary effects. During holidays, the overall intensity of the intercity travel network increases, with the most significant increase in medium- and long-distance cross-provincial travel. The provincial boundary effect and spatial proximity effect decrease, weakening the structure of the intercity travel network.
Wulin Zhan , Guangliang Xi , Yang Ju , Fei Shi . Temporal Heterogeneity and Impact Mechanism of Intercity Travel Time in the Yangtze River Delta Region[J]. Tropical Geography, 2024 , 44(5) : 850 -863 . DOI: 10.13284/j.cnki.rddl.003865
图2 长三角城市群区域范围 Fig.2 Regional scope of the Yangtze River Delta Urban Agglomeration |
表1 城际出行影响因素变量描述性统计Table 1 Descriptive statistics of variables related to the intercity travel influencing factors |
变量 | 测算方法 | 最小值 | 最大值 | 中位数 | 标准差 | |
---|---|---|---|---|---|---|
因变量 | 城际出行 | 百度迁徙规模指数 | 0.000 | 2.660 | 0.129 | 0.129 |
工作日日均城际出行 | 0.000 | 2.032 | 0.009 | 0.115 | ||
周末日均城际出行 | 0.000 | 2.660 | 0.009 | 0.138 | ||
节假日日均城际出行 | 0.000 | 1.949 | 0.014 | 0.131 | ||
核心 解释 变量 | 人口规模 | 城市常住人口/万人 | 97.000 | 2 428.000 | 500.000 | 392.079 |
经济水平 | 国内生产总值/亿元 | 816.330 | 38 155.000 | 3 139.290 | 6 420.933 | |
地理距离 | 出行时长/h | 0.167 | 9.167 | 2.853 | 1.692 | |
控制 变量 | 产业结构 | 第三产业占比/% | 42.350 | 72.730 | 48.930 | 6.210 |
收入水平 | 全市平均工资/万元 | 6.567 | 16.026 | 8.382 | 1.886 | |
公共服务 | 全市医院数量/个 | 30.000 | 387.000 | 176.000 | 82.675 | |
全市博物馆、文化馆、公共图书馆总数/个 | 14.000 | 145.000 | 70.000 | 28.605 | ||
旅游收入 | 全市旅游总收入/亿元 | 127.000 | 4 789.000 | 782.700 | 1 029.464 | |
行政因素 | 城市等级(直辖市=3,省会,计划单列市=2,地级市=1) | 1.000 | 3.000 | 1.171 | 0.436 | |
是否跨省出行(是=1,否=0) | 0.000 | 1.000 | 0.691 | 0.462 | ||
交通设施 | 城市公路里程数/km | 1 907.000 | 24 124.000 | 11 818.000 | 5 220.904 | |
是否建有机场(是=1,否=0) | 0.000 | 1.000 | 0.561 | 0.496 | ||
是否开通高铁(是=1,否=0) | 0.000 | 1.000 | 0.951 | 0.215 |
表2 PPML重力模型回归结果Table 2 The PPML gravity regression results |
解释变量 | ||||
---|---|---|---|---|
模型(1) | 模型(2) | 模型(3) | ||
城市常住人口 O | 0.203***(0.017) | 0.217***(0.023) | 0.254***(0.030) | |
城市常住人口 D | 0.177***(0.017) | 0.134***(0.023) | 0.143***(0.031) | |
国内生产总值 O | 0.145*(0.013) | 0.152*(0.014) | 0.147**(0.019) | |
国内生产总值 D | 0.142***(0.013) | 0.140***(0.014) | 0.169***(0.019) | |
出行时长 | -0.004***(0.000) | -0.002***(0.000) | -0.002***(0.000) | |
出行时段 | 参照组:工作日 | 0 | 0 | 0 |
周末 | 0.005*(0.014) | 0.005*(0.012) | 0.342*(0.220) | |
节假日 | 0.141***(0.013) | 0.127***(0.012) | 1.175***(0.204) | |
城市常住人口 O #出行时段 | 参照组:工作日 | 0 | ||
周末 | 0.060(0.034) | |||
节假日 | -0.046(0.031) | |||
城市常住人口 D #出行时段 | 参照组:工作日 | 0 | ||
周末 | -0.013*(0.034) | |||
节假日 | -0.013*(0.031) | |||
国内生产总值 O #出行时段 | 参照组:工作日 | 0 | ||
周末 | 0.039*(0.022) | |||
节假日 | -0.020(0.019) | |||
国内生产总值 D #出行时段 | 参照组:工作日 | 0 | ||
周末 | -0.021(0.022) | |||
节假日 | -0.064**(0.020) | |||
出行时长#出行时段 | 参照组:工作日 | 0 | ||
周末 | -0.001*(0.000) | |||
节假日 | 0.001**(0.000) | |||
常数 | 3.541***(0.136) | 5.982***(1.158) | 5.476***(1.166) | |
样本数量/个 | 4 920 | 4 920 | 4 920 | |
控制变量 | 否 | 是 | 是 | |
Province O 固定效应 | 是 | 是 | 是 | |
Province D 固定效应 | 是 | 是 | 是 | |
Log pseudolikelihood | -1 179.120 | -923.343 | -913.695 | |
Pseudo R² | 0.505 | 0.613 | 0.617 |
|
表3 工作日与非工作日各核心解释变量的边际效应Table 3 Marginal effect of core variables on weekdays and non weekdays |
出行时段 | 城市常住人口 O | 城市常住人口 D | 国内生产总值 O | 国内生产总值 D | 出行时长 |
---|---|---|---|---|---|
工作日 | 0.254*** (0.031) | 0.143*** (0.031) | 0.147*** (0.019) | 0.170*** (0.019) | -0.002*** (0.000) |
周末 | 0.314*** (0.061) | 0.130*** (0.031) | 0.186*** (0.019) | 0.149*** (0.019) | -0.003*** (0.000) |
节假日 | 0.208*** (0.027) | 0.130*** (0.027) | 0.127*** (0.017) | 0.106*** (0.017) | -0.001*** (0.000) |
|
1 https://qianxi.baidu.com/
2 https://www.ctrip.com/
3 https://flightaware.com/
战武麟:论文初稿撰写与修改、数据搜集与处理、图表制作;
席广亮:论文思路构思、论文修改与完善;
居 阳:模型方法分析;
石 飞:论文修改与完善。
储君,仝德,古恒宇,曹志强,潘向向. 2023. 中国城际联系距离衰减的非线性规律——基于人口流动大数据. 地理科学进展,42(01):1-11.
Chu Jun, Tong De, Gu Hengyu, Cao Zhiqiang, and Pan Xiangxiang. 2023. Nonlinear Characteristics of Distance-Decay Parameter in Intercity Links: Based on Human Mobility Big Data. Progress in Geography, 42(1): 1-11.
|
Cui C, Wu X, Liu L, and Zhang W. 2020. The Spatial-Temporal Dynamics of Daily Intercity Mobility in the Yangtze River Delta: An Analysis Using Big Data. Habitat International, 106: 1-9.
|
丁成日,李琪. 2023. 城市规模和行政等级对农村人口流动的影响. 城市发展研究,30(9):42-51.
Ding Chengri and Li Qi. 2023. The Locational lmpact of City Size and Administrative Ranking on Rural Urban Floating Population. Urban Studies, 30(9): 42-51.
|
Dong T, Jia N, Ma S F, Xu S X, Ping Ong G, Liu P, and Huang H J. 2022. Impacts of Intercity Commuting on Travel Characteristics and Urban Performances in a Two-City System. Transportation Research: Part E, Logistics and Transportation Review, 164: 102792.
|
窦旺胜,秦波,郝美竹,万思齐. 2023. 中国青年流动人口城市选择的空间特征及影响因素. 地理研究,42(5):1234-1247.
Dou Wangsheng, Qin Bo, Hao Meizhu, and Wan Siqi. 2023. Spatial Characteristics and Influencing Factors of Young Migrants' Selection of City in China. Geographical Research, 42(5): 1234-1247.
|
方创琳. 2021. 新发展格局下的中国城市群与都市圈建设. 经济地理,41(4):1-7.
Fang Chuanglin. 2021. China's Urban Agglomeration and Metropolitan Area Construction Under the New Development Pattern. Economic Geography, 41(4): 1-7.
|
高苹,戚伟,刘盛和,刘振,潘泽瀚. 2023. 中国城市网络结构特征及组织模式——基于长短期人口流的比较. 人文地理,38(6):82-91.
Gao Ping, Qi Wei, Liu Shenghe, Liu Zhen, and Pan Zehan. 2023. Comparison of Spatial Structure and Organization Mode of City Networks From the Perspective of Long-Term and Short-Term Population Flows. Journal of Human Geography, 38(6): 82-91.
|
Gu H, Jie Y, and Liao X. 2022. Health Service Disparity, Push-Pull Effect, and Elderly Migration in Ageing China. Habitat International, 125: 102581.
|
顾朝林,庞海峰. 2008. 基于重力模型的中国城市体系空间联系与层域划分. 地理研究,27(1):1-12.
Gu Chaolin and Pang Haifeng. 2008. Study on Spatial Relations of Chinese Urban System: Gravity Model Approach. Geographical Research, 27(1): 1-12.
|
顾朝林. 2011. 城市群研究进展与展望. 地理研究,30(5):771-784.
Gu Chaolin. 2011. Study on Urban Agglomeration: Progress and Prospects. Geographical Research, 30(5): 771-784.
|
古恒宇,劳昕,温锋华,赵志浩. 2022. 2000—2020年中国省际人口迁移格局的演化特征及影响因素. 地理学报,77(12):3041-3054.
Gu Hengyu, Lao Xin, Wen Fenghua, and Zhao Zhihao. 2022. Spatiotemporal Patterns and Determinants of Interprovincial Migration in China Between 2000 and 2020. Acta Geographica Sinica, 77(12): 3041-3054.
|
国家发展与改革委员会. 2016. 长江三角洲城市群发展规划(2015—2030).(2016-07-15)[2024-04-09]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201606/W020190905497826154295.pdf.
National Development and Reform Commission of the People's Republic of China. 2016. The Development Plan for the Yangtze River Delta Urban Agglomeration(2015-2030).(2016-07-15)[2024-04-09]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201606/W020190905497826154295.pdf.
|
郭卫东,钟业喜,李炜. 2023. 基于不同交通方式的中国城市间人口流动网络比较研究. 世界地理研究,32(7):102-112.
Guo Weidong, Zhong Yexi, and Li Wei. 2023. A Comparative Study on the Population Flow Network Between Chinese Cities Based on Different Transportation Modes. World Regional Studies, 32(7): 102-112.
|
国务院. 2019. 《长江三角洲区域一体化发展规划纲要》.(2019-12-01)[2024-04-09]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm.
State Council of the People's Republic of China. 2019. Outline Plan for the Integrated Development of the Yangtze River Delta Region. (2019-12-01) [2024-04-09]. https://www.gov.cn/zhengce/201912/01/content_5457442.htm.
|
黄洁,王姣娥. 2023. 出行韧性的理论与方法及实证. 地理学报,78(10):2507-2519.
Huang Jie and Wang Jiao'e. 2023. Theory, Method, and Empirical Studies of Travel Behavior Resilience. Acta Geographica Sinica, 78(10): 2507-2519.
|
雷玮倩,焦利民. 2023. 城市人口集聚与城市间人口流动对经济产出的影响. 地理学报,78(8):1969-1982.
Lei Weiqian and Jiao Limin. 2023. The Impacts of Urban Population Agglomeration and Human Mobility on Economic Performance. Acta Geographica Sinica, 78(8): 1969-1982.
|
Li T, Wang J, Huang J, and Gao X. 2020. Exploring Temporal Heterogeneity in an Intercity Travel Network: A Comparative Study between Weekdays and Holidays in China. Journal of Geographical Sciences, 30(12): 1943-1962.
|
李鹏博,田丽君,黄文彬. 2021. 基于系统动力学的人口迁移重力模型改进及实证检验. 系统工程理论与实践,41(7):1722-1731.
Li Pengbo, Tian Lijun, and Huang Wenbin. 2021. Improvement and Empirical Test of Population Migration Gravity Model Based on System Dynamics. Systems Engineering-Theory & Practice, 41(7): 1722-1731.
|
李涛,王姣娥,高兴川. 2020. 中国居民工作日与节假日的城际出行网络异同性研究. 地理学报,75(4):833-848.
Li Tao, Wang Jiao'e, and Gao Xingchuan. 2020. Comparison of Inter-City Travel Network During Weekdays and Holiday in China. Acta Geographica Sinica, 75(4): 833-848.
|
李涛,李宇,戴靓,王姣娥. 2021. COVID-19疫情影响下的“五一”小长假城际出行特征与影响因素. 地理研究,40(11):3225-3241.
Li Tao, Li Yu, Dai Liang, and Wang Jiao'e. 2021. Characteristics and Influencing Factors of Intercity Travel During the May Day Holiday Under the Influence of the COVID-19 Outbreak in China. Geographical Research, 40(11): 3225-3241.
|
李宇,李涛,邱孟龙,李继园,曹小曙. 2023. 基于交通流的关中城市群城际交互对城市空间增长的影响. 人文地理,38(1):147-157.
Li Yu, Li Tao, Qiu Menglong, Li Jiyuan, and Cao Xiaoshu. 2023. Impact of Intercity Interaction on Urban Space Growth in the Guanzhong Plain Urban Agglomeration Based on Traffic Flows. Journal of Human Geography, 38(1): 147-157.
|
刘建国,丁杨,薛丹阳. 2023. 人口流动研究进展:测度方法、影响因素与经济社会影响. 西北人口,44(6):73-85.
Liu Jianguo, Ding Yang, and Xue Danyang. 2023. Research Progress on Population Mobility: Measurement Methods, Influencing Factors and Economic and Social Impacts. Northwest China Population, 44(6): 73-85.
|
刘振,戚伟,刘盛和,齐宏纲,金浩然,张雪飞. 2023. 中国城市流动人口就业行业选择分异及影响因素. 地理科学进展,42(6):1055-1068.
Liu Zhen, Qi Wei, Liu Shenghe, Qi Honggang, Jin Haoran, and Zhang Xuefei. 2023. Employment Choice of the Floating Population and Influencing Factors in China. Progress in Geography, 42(6): 1055-1068.
|
骆许蓓. 2003. 论双边贸易研究中重力模型的距离因素. 世界经济文汇,(2):45-60.
Luo Xubei. 2003. On the Distance Factor in the Gravity Model of Bilateral Trade Studies. World Economic Papers, (2): 45-60.
|
Niu F. 2022. A Push-Pull Model for Inter-City Migration Simulation. Cities, 131: 104005.
|
钮心毅,朱艺. 人口迁居视角下的中国人口城镇化空间格局——基于百度迁徙数据的研究. 城市规划,(2023-09-21)[2023-12-03]. https://link.cnki.net/urlid/11.2378.tu.20230920.0931.002.
Niu Xinyi and Zhu Yi. Spatial Pattern of China's Population Urbanization From the Perspective of Population Migration: A Study Based on Baidu Migration Data. Urban Planning, (2023-09-21) [2023-12-03]. https://link.cnki.net/urlid/11.2378.tu.20230920.0931.002.
|
潘竟虎,魏石梅,张蓉,杨亮洁. 2022. 中国居民城际出行网络的空间结构特征. 地理学报,77(10):2494-2513.
Pan Jinghu, Wei Shimei, Zhang Rong, and Yang Liangjie. 2022. Spatial Structure Characteristics of Intercity Travel Network of Chinese Residents: Based on Tencent Migration Data. Acta Geographica Sinica, 77(10): 2494-2513.
|
Qi R, Pan J, and Zhang R. 2021. Comparison of Intercity Travel Network Structure During Daily Time and Holiday in China. Complexity, 2021: 1-15.
|
祁琪,马瑞光,殷江滨,王紫璇. 2023. 地方环境对流动人口回流意愿的非线性影响——基于流入地与户籍地的比较分析. 地理科学,44(2):228-237.
Qi Qi, Ma Ruiguang, Yin Jiangbin, and Wang Zixuan. 2023. Non-Linear Influence of Regional Contexts on Return Migration Intentions: A Comparative Study Between the Place of Origin and Destination. Geographical Science,44(2):228-237.
|
施响,王士君,王冬艳,浩飞龙,李卓伟. 2022. 中国市域间日常人口流动特征及影响因素. 地理科学,42(11):1889-1899.
Shi Xiang, Wang Shijun, Wang Dongyan, Hao Feilong, and Li Zhuowei. 2022. Characteristics and Influencing Factors of Daily Population Flow Among Cities in China. Geographical Science, 42(11): 1889-1899.
|
Silva J M C S and Tenreyro S. 2006. The Log of Gravity. The Review of Economics and Statistics, 88(4): 641-658.
|
谭爽,魏冶,李晓玲,孙欣. 2022. 不同邻近性视角下城市网络外部性、集聚外部性对城市经济的影响——以辽宁省城市网络为例. 地理研究,41(9):2404-2417.
Tan Shuang, Wei Ye, Li Xiaoling, and Sun Xin. 2022. The Impact of Urban Network Externalities and Agglomeration Externalities on Urban Economy Through the Lens of Different Proximity: A Case of Urban Network in Liaoning Province. Geographical Research, 41(9): 2404-2417.
|
唐佳,甄峰,秦萧. 2018. 信息时代高铁走廊区域居民活动空间——概念模型与研究框架. 地理研究,37(9):1789-1801.
Tang Jia, Zhen Feng, and Qin Xiao. 2018. Activity Space of Regional High Speed Rail Corridor in Information Era: Conceptual Model and Research Framework. Geographical Research, 37(9): 1789-1801.
|
唐佳,甄峰,席广亮. 2020. 高铁走廊区域居民城际流动支撑体系优化策略研究——以沪宁高铁为例. 现代城市研究,(9):31-39.
Tang Jia, Zhen Feng, and Xi Guangliang. 2020. A Study on Optimizing Strategies of Residents' Intercity Mobility Support System for Regional High Speed Rail Corridor: A Case Study of Shanghai-Nanjing High Speed Rail. Modern Urban Research, (9): 31-39.
|
Wang Y, Li X, Yao X, Li S, and Liu Y. 2022. Intercity Population Migration Conditioned by City Industry Structures. Annals of the American Association of Geographers, 112(5): 1441-1460.
|
王婧,刘奔腾,李裕瑞. 2018. 京津冀人口时空变化特征及其影响因素. 地理研究,37(9):1802-1817.
Wang Jing, Liu Benteng, and Li Yurui. 2018. Spatial-Temporal Characteristics and Influencing Factors of Population Distribution and Floating Changes in Beijing-Tianjin-Hebei Region. Geographical Research, 37(9): 1802-1817.
|
王先进,刘芳. 2006. 基于重力模型的交通对人口迁移影响分析. 综合运输,(1):14-17.
Wang Xianjin and Liu Fang. 2006. Analysis of the Impact of Transportation on Population Migration Based on the Gravity Model. Integrated Transport, (1): 14-17.
|
王雪微,赵梓渝,曹卫东,王士君. 2021. 长三角城市群网络特征与省际边界效应——基于人口流动视角. 地理研究,40(6):1621-1636.
Wang Xuewei, Zhao Ziyu, Cao Weidong, and Wang Shijun. 2021. Study of Network Characteristics and Inter-Provincial Boundary Effect of the Yangtze River Delta Urban Agglomeration: From the Perspective of Population Flow. Geographical Research, 40(6): 1621-1636.
|
王垚,钮心毅. 2021. 长江三角洲城市群核心区的功能多中心特征和规划响应——基于城际出行联系的研究. 国际城市规划,36(6):98-108.
Wang Yao and Niu Xinyi. 2021. The Functional Polycentricity Characteristics and Planning Responses of Urban Agglomeration Core Area in the Yangtze River Delta: A Study Based on Intercity Trip Connection. International Urban Planning, 36(6): 98-108.
|
王雨,张京祥,周子航. 2022. 从地理距离到“制度距离”:区域一体化的影响机制与空间效应测度. 城市发展研究,29(12):112-121.
Wang Yu, Zhang Jingxiang, and Zhou Zihang. 2022. From Geographical Distance to Institutional Distance: The Influence Mechanism and Spatial Effect Measurement of Regional Integration. Urban Development Studies, 29(12): 112-121.
|
王紫璇,候媛,殷江滨,黄晓燕. 2023. 中国流动人口回流意愿的推拉机制——基于交叉分类多层模型的实证. 地理研究,42(10):2663-2676.
Wang Zixuan, Hou Yuan, Yin Jiangbin, and Huang Xiaoyan. 2023. The Push-Pull Mechanism of Return Migration Intentions in China: An Empirical Study Based on Cross-Classified Multilevel Model. Geographical Research, 42(10): 2663-2676.
|
吴晓黎. 2021. 中国人口流动格局及影响因素研究:基于春节与工作日的对比. 上海:华东师范大学.
Wu Xiaoli. 2021. Spatial Pattern and Impact Factors of Population Mobility in China: A Comparison Between the Spring Festival and Workdays. Shanghai: East China Normal University.
|
新华社. 2019. 中共中央国务院印发长江三角洲区域一体化发展规划纲要.人民日报,2019-12-02(1).
Xinhua News Agency. 2019. The CPC Central Committee and the State Council Issued the Outline of the Yangtze River Delta Region Integration Development Plan. People's Daily, 2019-12-02 (1).
|
徐敏,黄震方,曹芳东,朱海珠. 2018. 基于在线预订数据分析的旅游流网络结构特征与影响因素——以长三角地区为例. 经济地理,38(6):193-202.
Xu Min, Huang Zhenfang, Cao Fangdong, and Zhu Haizhu. 2018. The Network Structure Features and Influence Factors of Tourism Flows Based on Online Data Analysis:Taking the Yangtze River Delta Region as an Example. Economic Geography, 38(6): 193-202.
|
张蓉,潘竟虎,赖建波. 2021. 不同交通方式下居民城际出行网络结构特征——以“春运”为例. 地理科学进展,40(5):759-773.
Zhang Rong, Pan Jinghu, and Lai Jianbo. 2021. Characteristics of Intercity Trip Network Structure of Residents under Different Traffic Modes: A Case Study of Spring Festival Travel Rush. Progress in Geography, 40(5): 759-773.
|
张听雨,吕迪,赵鹏军. 2022. 基于居民出行大数据的我国都市圈识别及其分布格局. 人文地理,37(6):171-182.
Zhang Tingyu, Lv Di, and Zhao Pengjun. 2022. Identification and Distribution Pattern of Metropolitan Areas in China Based on Resident Travel Data. Human Geography, 37(6): 171-182.
|
Zhang X and Gao J. 2023. The Analysis and Solution for Intercity Travel Behaviors During Holidays in the Post-Epidemic Era Based on Big Data. PLoS One, 18(7): e0288510.
|
赵梓渝,魏冶,杨冉,王士君,朱宇. 2019. 中国人口省际流动重力模型的参数标定与误差估算. 地理学报,74(2):203-221.
Zhao Ziyu, Wei Ye, Yang Ran, Wang Shijun, and Zhu Yu. 2019. Gravity Model Coefficient Calibration and Error Estimation: Based on Chinese Interprovincial Population Flow. Acta Geographica Sinica, 74(2): 203-221.
|
赵梓渝,赵世瑶,韩钟辉,刘璐,贾聚慧,王士君. 2022. COVID-19疫情对中国节日人口城际出行影响研究. 人文地理,37(2):141-149.
Zhao Ziyu, Zhao Shiyao, Han Zhonghui, Liu Lu, Jia Juhui, and Wang Shijun. 2022. The Impact of the COVID-19 Pandemic on Intercity Travel During Chinese Festivals. Human Geography, 37(2): 141-149.
|
甄峰,翟青,陈刚,沈丽珍. 2012. 信息时代移动社会理论构建与城市地理研究. 地理研究,31(2):197-206.
Zhen Feng, Zhai Qing, Chen Gang, and Shen Lizhen. 2012. Mobile Social Theory Construction and Urban Geographic Research in the Information Era. Geographical Research, 31(2): 197-206.
|
朱雷洲,黄亚平,丁乙宸,郑加伟,谢来荣. 2022. “通勤圈”还是“交通圈”:新时期都市圈内涵及范围划定再认知. 城市发展研究,29(10):78-86.
Zhu Leizhou, Huang Yapin, Ding Yichen, Zheng Jiawei, and Xie Lairong. 2022. "Commuter Circle" or "Traffic Circle": Re Cognition of the Connotation and Scope of Metropolitan Circle in the New Era. Urban Development Studies, 29(10): 78-86.
|
Zipf G K. 1946. The P1 P2/D Hypothesis: On the Intercity Movement of Persons. American Sociological Review, 11(6): 677-686.
|
/
〈 |
|
〉 |