Application Potential of Social Media Data Analytics in Typhoon Disaster Management: Taking the Impact of Typhoon Doksuri on Fujian Province as an Example
Received date: 2023-12-04
Revised date: 2024-04-01
Online published: 2024-06-13
The rapid growth of social media has introduced new concepts and technical approaches for disaster management. This paper reviews the characteristics of social media data and its application potential in disaster management research, providing a new research perspective for the field of disaster management. Taking the impact of Typhoon Doksuri in Fujian Province in 2023 as a case study, this research employs Latent Dirichlet Allocation (LDA) topic modeling to analyze the practical application effectiveness of social media data at different stages of disaster management from three perspectives: the spatiotemporal distribution of posts, trend analysis of different types of entities, and evolution of topic content. These findings indicate that the synchronous relationship between the popularity of related topics on Weibo and the impact of a disaster event confirms the effective application of social media data in disaster management. By monitoring the dynamics of information dissemination on social media, we can determine the occurrence status and impact scope of disasters in real time. During disasters, different user types have different foci. Individual users tend to focus more on the restoration of living facilities and the supply of relief materials, whereas organizational users concentrate on disseminating information about disasters and emergency response measures. The information provided by different types of users can provide a more comprehensive and diversified perspective on disaster perceptions for disaster management. Analysis of the evolution of topic content can reflect the evolution of emergency response dynamics and public attention needs in different cities at different stages of disaster management, thereby developing more practical emergency response strategies. Through the mining and analysis of social media data, this study recognizes the entire process of disaster occurrence from the perspective of social media data, thereby enriching the relevant theoretical and empirical research. Future research could be conducted from perspectives such as utilizing other multisource data, integrating machine learning and deep learning technologies to enhance the accuracy of topic information extraction, and exploring the application of social media data to post-disaster emergency rescue and infrastructure support.
Xuemiao Xie , Yiwen Shao . Application Potential of Social Media Data Analytics in Typhoon Disaster Management: Taking the Impact of Typhoon Doksuri on Fujian Province as an Example[J]. Tropical Geography, 2024 , 44(6) : 1090 -1101 . DOI: 10.13284/j.cnki.rddl.003880
表1 台风“杜苏芮”期间福建省微博发文的主题聚类Table 1 Thematic clustering of Weibo posts in Fujian Province during Typhoon Doksuri |
主题聚类 | 主题编码 | 主题词 |
---|---|---|
气象预警 | Topic#9 | 预警、发布、红色、暴雨、气象台、风险、升级、预计、时分、橙色 |
Topic#24 | 气象台、中心、预警、信号、发布、风力、公里、年月日时、距离、预计 | |
避险通知 | Topic#1 | 区域、提前、做好、危险、加固、设施、远离、转移、外出、值班 |
Topic#2 | 景区、临时、暂停、影响、通知、公园、运营、开放、游客、闭园 | |
Topic#16 | 全市、一休、停工、停课、结束、三停、防台风、市民、应急响应、停产 | |
公众反应 | Topic#15 | 正面、袭击、啊啊啊、宁静、超市、睡不着、囤货、防台风、不要出门、计划 |
Topic#23 | 影响、新世纪、安静、平安、可怕、害怕、外面、平静、窗户、吓人 | |
交通状况 | Topic#13 | 出行、车辆、高速、交警、通行、路段、交通管制、高速公路、受灾、辖区 |
Topic#21 | 停运、列车、旅客、铁路、路段、火车站、调整、退票、路口、车站 | |
应急救援 | Topic#5 | 救援、消防、群众、转移、紧急、被困、受灾、消防员、人员、影响 |
Topic#10 | 应急响应、防台风、启动、防汛、应急、提升、抗旱、预案、指挥部、一级 | |
Topic#18 | 工作、防御、做好、全力、应急、防抗、措施、部署、防汛、物资 |
谢雪苗:数据收集与处理、论文撰写、图表绘制;
邵亦文:论文指导与修改、基金支持。
Ahmed Yunis Ali, Ahmad Mohammad Nazir, Ahmad Norasnita, and Zakaria Nor Hidayati. 2019. Social Media for Knowledge-Sharing: A Systematic Literature Review. Telematics and Informatics, 37: 3772-112.
|
Avvenuti Marco, Cresci Stefano, Marchetti Andrea, Meletti Carlo, and Tesconi Maurizio. 2014. EARS (Earthquake Alert and Report System): A Real Time Decision Support System for Earthquake Crisis Management. In: ACM Digital Library. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 1749-1758.
|
Chaniotakis Emmanouil, Antoniou Constantinos, and Pereira Francisco C. 2017. Enhancing Resilience to Disasters Using Social Media. In: IEEE. The 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Napoli: IEEE, 699-703.
|
Chen Zi and Lim Samsung. 2021. Social Media Data-Based Typhoon Disaster Assessment. International Journal of Disaster Risk Reduction, 64: 102482.
|
陈奇放,翟国方,李文静,付泽钰. 2019. 新西兰适应沿海灾害和海平面上升的规划经验与启示//中国城市规划学会. 2019中国城市规划年会论文集. 重庆:中国建筑工业出版社,248-256. 2019中国城市规划年会.
Chen Qifang, Zhai Guofang, Li Wenjing, and Fu Zeyu. 2019. New Zealand's Planning Experience and Enlightenment in Adapting to Coastal Disasters and Sea Level Rise, China.In: Urban Planning Society of China. Proceedings of 2019 China Urban Planning Annual Conference. Chongqing: China Architecture and Building Press, 248-256.
|
Fang Jian, Hu Jiameng, Shi Xianwu, and Zhao Lin. 2019. Assessing Disaster Impacts and Response Using Social Media Data in China: A Case Study of 2016 Wuhan Rainstorm. International Journal of Disaster Risk Reduction, 34: 275-282.
|
范红超,孔格菲,杨岸然. 2022. 众源地理信息研究现状与展望. 测绘学报,51(7):1653-1668.
Fan Hongchao, Kong Gefei, and Yang Anran. 2022. Current Status and Prospects of Research for Volunteered Geographic Information, China. Acta Geodaetica et Cartographica Sinica, 51(7): 1653-1668.
|
福建日报. 2023. 台风“杜苏芮”共造成我省266.69万人受灾. (2023-08-01)[2024-03-25]. https://slt.fujian.gov.cn/wzsy/mtjj/202308/t20230801_6217733.htm.
Fujian Daily. 2023. Typhoon Doksuri Ccaused a Total of 2,666,900 People in Fujian Province to be Affected. (2023-08-01) [2024-03-25]. https://slt.fujian.gov.cn/wzsy/mtjj/202308/t20230801_6217733.htm.
|
龚晓峰. 2020. 台风灾害链分析及其对城市生命线系统脆弱性影响的研究. 重庆:重庆大学.
Gong Xiaofeng. 2020. Study on Disaster Chain of Typhoon and Its Impact on Urban Lifeline System Vulnerability. Chongqing: Chongqing University.
|
Han Xuehua and Wang Juanle. 2019. Using Social Media to Mine and Analyze Public Sentiment during a Disaster: A Case Study of the 2018 Shouguang City Flood in China. International Journal of Geo-Information, 8(4): 185.
|
Huang Qunying and Xiao Yu. 2015a. Geographic Situational Awareness: Mining Tweets for Disaster Preparedness, Emergency Response, Impact, and Recovery. International Journal of Geo-Information, 4(3): 1549-1568.
|
Huang Qunying, Cervone Guido, Jing Duangyang, and Chang Chaoyi. 2015b. Disaster Mapper: A CyberGIS Framework for Disaster Management Using Social Media Data. In: ACM SIGSPATIAL. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. Seattle: ACM SIGSPATIAL,1-6.
|
Huang Sheng,Du Yunyan,Yi Jiawei,Liang Fuyuan,Qian Jiale,Wang Nan, and Tu Wenna. 2022. Understanding Human Activities in Response to Typhoon Hato from Multi-Source Geospatial Big Data: A Case Study in Guangdong, China. Remote Sensing, 14(5): 1269.
|
黄惠镕,赵玉春,荀爱萍,陈健康,张伟. 2021. 2013年相似路径台风“苏力”与“潭美”造成福建暴雨落区差异的成因. 暴雨灾害,40(2):136-146.
Huang Huirong, Zhao Yuchun, Xun Aiping, Chen Jiankang, and Zhang Wei. 2021. Causality Analysis of Difference of Heavy Rainfall Distribution in Fujian Caused by Typhoons Soulik and Trami along Similar Tracks in 2013, China. Torrential Rain and Disasters, 40(2): 136-146.
|
Lam Nina S N, Meyer Michelle, Reams Margaret, Yang Seungwon, Lee Kisung, Zou Lei, Mihunov Volodymyr, Wang Kejin, Kirby Ryan, and Cai Heng. 2023. Improving Social Media Use for Disaster Resilience: Challenges and Strategies. International Journal of Digital Earth, 16(1): 3023-3044.
|
Leykin Dmitry, Lahad Mooli, and Aharonson-Daniel Limor. 2018. Gauging Urban Resilience from Social Media. International Journal of Disaster Risk Reduction, 31: 393-402.
|
Ogie R I, James S, Moore A, Dilworth T, Amirghasemi M, and Whittaker J. 2022. Social Media Use in Disaster Recovery: A Systematic Literature Review. International Journal of Disaster Risk Reduction, 70: 102783.
|
李绍攀,赵飞,周义棋,田向亮,黄弘. 2022. 基于微博数据的台风灾害舆情分析与灾害损失估计. 清华大学学报(自然科学版),62(1):43-51.
Li Shaopan, Zhao Fei, Zhou Yiqi, Tian Xiangliang, and Huang Hong. 2022. Analysis of Public Opinion and Disaster Loss Estimates from Typhoon Based on Microblog Data. Journal of Tsinghua University(Science and Technology), 62(1): 43-51.
|
梁春阳. 2019. 基于社交媒体的台风灾情信息抽取方法研究. 福建:福建师范大学.
Liang Chunyang. 2019. A Method of Extraction Typhoon Disaster Information Using Social Media Data. Fujian: Fujian Normal University.
|
刘宏波. 2018. 基于网络媒体信息的不同自然灾害响应模式研究. 南京:南京大学.
Liu Hongbo. 2018. Research on the Different Natural Disaster Response Patterns Based on the Network Media Information. Nanjing: Nanjing University.
|
刘纪平,刘猛猛,徐胜华,杜清运,朱军,朱秀丽. 2020. 大数据时代下的一体化综合减灾技术综述. 武汉大学学报(信息科学版),45(8):1107-1116.
Liu Jiping, Liu Mengmeng, Xu Shenghua, Du Qingyun, Zhu Jun, and Zhu Xiuli. 2020. A Survey on Integrated and Comprehensive Disaster Reduction Technology in the Era of Big Data, China. Geomatics and Information Science of Wuhan University, 45(8): 1107-1116.
|
Olynk Widmar Nicole, Rash Kendra, Bir Courtney, Bir Benjamin, and Jung Jinho. 2022. The Anatomy of Natural Disasters on Online Media: Hurricanes and Wildfires. Natural Hazards, 110(2): 961-998.
|
Sakaki Takeshi, Okazaki Makoto, and Matsuo Yutaka. 2010. Earthquake Shakes Twitter Users: Real-Time Event Detection by Social Sensors. In: World Wide Web. Proceedings of the 19th International Conference on World Wide Web. Raleigh: World Wide Web, 851-860.
|
Sheth Amit. 2009. Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE Internet Computing, 13(4): 87-92.
|
Slick Jean. 2019. Experiencing Fire: A Phenomenological Study of YouTube Videos of the 2016 Fort McMurray Fire. Natural Hazards, 98(1): 181-212.
|
沈良坤. 2023. 福建复盘台风“杜苏芮”应对逐个环节研判精准高效防御. 安全与健康,(8):12-13.
Shen Liangkun. 2023. Fujian Reviews the Responses to Typhoon Doksuri to Judge Each Link Accurately for Efficient Prevention, China. Safety and Health, (8): 12-13.
|
Takahashi Bruno, Tandoc Edson C, and Carmichael Christine. 2015. Communicating on Twitter During a Disaster: An Analysis of Tweets During Typhoon Haiyan in the Philippines. Computers in Human Behavior, 50: 392-398.
|
Tang Jiting, Yang Saini, and Wang Weiping. 2021. Social Media-Based Disaster Research: Development, Trends, and Obstacles. International Journal of Disaster Risk Reduction, 55: 102095.
|
United Nations. 2015. Sendai Framework for Disaster Risk Reduction 2015-2030. (2015-03-18) [2024-05-02]. https://www.undrr.org/media/16176/download?startDownload=20240502.
|
Wang Zheye, Ye Xinyue, and Tsou Ming-Hsiang. 2016. Spatial, Temporal, and Content Analysis of Twitter for Wildfire Hazards. Natural Hazards, 83(1): 523-540.
|
Wang Zheye and Ye Xinyue. 2018. Social Media Analytics for Natural Disaster Management. International Journal of Geographical Information Science, 32(1): 49-72.
|
Wang Bo, Loo Becky P Y, Zhen Feng, and Xi Guangliang. 2020. Urban Resilience from the Lens of Social Media Data: Responses to Urban Flooding in Nanjing, China. Cities, 106: 102884.
|
Wu Desheng and Cui Yiwen. 2018. Disaster Early Warning and Damage Assessment Analysis Using Social Media Data and Geo-Location Information. Decision Support Systems, 111: 48-59.
|
Wu Kejie, Wu Jidong, and Li Yue. 2022. Mining Typhoon Victim Information Based on Multi-Source Data Fusion Using Social Media Data in China: A Case Study of the 2019 Super Typhoon Lekima. Geomatics. Natural Hazards and Risk, 13(1): 1087-1105.
|
王森,肖渝,黄群英,张纯. 2018. 基于社交大数据挖掘的城市灾害分析:纽约市桑迪飓风的案例. 国际城市规划,33(4):84-92.
Wang Seng, XiaoYu, Huang Qunying, and Zhang Chun. 2018. Research on Urban Disaster Analysis Based on the Big Data Mining of Social Media: Case Study of Hurricane Sandy in New York, China. Urban Planning International, 33(4): 84-92.
|
王月明,胡卓玮,陈锡. 2022. 基于社交媒体文本的灾情信息识别方法比较研究. 自然灾害学报,31(1):179-187.
Wang Yueming, Hu Zhuowei, and Chen Xi. 2022. Comparative Study on Disaster Information Recognition Methods Based on Social Media Text, China. Journal of Natural Disasters, 31(1): 179-187.
|
邬柯杰,吴吉东,叶梦琪. 2020. 社交媒体数据在自然灾害应急管理中的应用研究综述. 地理科学进展,39(8):1412-1422.
Wu Kejie, Wu Jidong, and Ye Mengqi. 2020. A Review on the Application of Social Media Data in Natural Disasters Emergency Management, China. Progress of Geographical, 39(8): 1412-1422.
|
向纯怡,高拴柱,刘达. 2022. 2021年西北太平洋和南海台风活动概述. 海洋气象学报,42(1):39-49.
Xiang Chunyi, Gao Shuanzhu, and Liu Da. 2022. Overview of Typhoon Activities in Western North Pacific and the South China Sea in 2021, China. Journal of Marine Meteorology, 42(1): 39-49.
|
Yang Tengfei, Xie Jibo, Li Guoqing, Mou Naixia, Li Zhenyu, Tian Chuanzhao. and Zhao Jing. 2019. Social Media Big Data Mining and Spatio-Temporal Analysis on Public Emotions for Disaster Mitigation. International Journal of Geo-Information, 8(1): 29.
|
Young Camila Espina, Kuligowski Erica D, and Pradhan Aashna. 2020. A Review of Social Media Use During Disaster Response and Recovery Phases. Gaithersburg, MD: National Institute of Standards and Technology.
|
余徳贵,梁立峰,蔡海鹏. 2023. 福建省重点防范科学调度应对台风“杜苏芮”. 中国防汛抗旱,33(9):85-86.
Yu Degui, Liang Lifeng, and Cai Haipeng. 2023. Fujian Province: Key Preventions and Scientific Regulation in Response to Typhoon Doksuri, China. China Flood and Drought Management, 33(9): 85-86.
|
应急管理部. 2024. 2023年全国自然灾害基本情况. (2024-01-20)[2024-03-25]. https://www.mem.gov.cn/xw/yjglbgzdt/202401/t20240120_475697.shtml.
Emergency Management Department of People's Republic of China. 2014. Basic Situation of Natural Disasters in China in 2023. (2024-01-20) [2024-03-25]. https://www.mem.gov.cn/xw/yjglbgzdt/202401/t20240120_475697.shtml.
|
Zou Lei, Lam Nina S N, Cai Heng, and Qiang Yi. 2018. Mining Twitter Data for Improved Understanding of Disaster Resilience. Annals of the Association of American Geographers, 108(5): 1422-1441.
|
张一鸣. 2021. 基于多源数据感知的社区公共健康韧性评价与规划提升策略. 南京:南京大学.
Zhang Yiming. 2021. Resilience Evaluation and Planning Strategy of Community Public Health Based on Multi-Source Data: Take Nanjing as an Example. Nanjing: Nanjing University.
|
周利敏. 2021. 大数据时代的社交媒体与自然灾害治理. 人文杂志,(1):102-109.
Zhou Limin. 2021. Social Media and Natural Disaster Management in the Era of Big Data, China. The Journal Humanities, (1): 102-109.
|
周义棋,田向亮,钟茂华. 2022. 基于微博数据的自然灾害应急救助需求评估. 清华大学学报(自然科学版),62(10):1626-1635.
Zhou Yiqi, Tian Xiangliang, and Zhong Maohua. 2022. Assessment of Natural Disaster Emergency Relief Based on Microblog Data, China. Journal of Tsinghua University(Science and Technology), 62(10): 1626-1635.
|
中国国家标准化管理委员会. 2006. 热带气旋等级(GB/T 19201-2006). (2006-05-09)[2024-05-15]. https://tcdata.typhoon.org.cn/data/doc/TC_std.pdf.
Standardization Administration of the People's Republic of China. 2006. Grade of Tropical Cyclones(GB/T 19201-2006). (2006-05-09) [2024-05-15]. https://tcdata.typhoon.org.cn/data/doc/TC_std.pdf.
|
/
〈 |
|
〉 |