VNIR Characteristics of Rock Wall Hues at Danxia Mountain, Northern Guangdong, China
Received date: 2023-12-26
Revised date: 2024-04-15
Online published: 2024-09-05
China's Danxia landforms are characterized by their indicative red color. Portable ground object spectrometers are widely used owing to their small size, ease of operation in the field, rapid measurements, and simple operation. In this study, we analyzed the characteristic parameters of the reflection spectra of the Danxia rock wall surfaces (i.e., red surfaces, orange surfaces, and pure white spots) and different types of plant cover, as well as their quantitative relationships with color tones, using the visible-near-infrared (VNIR) reflectance spectra of the rock walls. The results indicate that the absorption depths and areas of the red and orange surface samples were highly correlated at 525 and 500 nm, as were the redness and orangeness of the samples. The redness and orangeness of the indoor and outdoor samples were relatively consistent with the absorption depth and area growth rates; however, the indoor samples had larger absorption depth and area values. The absorption depth and area of the pure white spots at 530 nm was highly correlated with redness, but the red surface and pure white spot spectra exhibited considerably different redness values, absorption depths, and absorption areas at 525–530 nm. Thus, these are advantageous parameters for distinguishing between the two surface types. The absorption positions of the red surfaces, orange surfaces, and pure white spots in the visible spectrum differed considerably, which is likely related to changes in the iron mineral types and contents present in the strata. Compared to the red surface absorption position at 525 nm, that of the orange surface shifted in the shortwave direction to 500 nm, which may be related to lower hematite and higher goethite contents. The absorption of the pure white spots at 430 nm may be caused by their pyrite content. The absorption depths of black, blocky, and green plants at 670 nm were considerably correlated with Normalized Difference Vegetation Index(NDVI). The NDVI values and absorption depths of the three plant types had widely differing range distributions, which can serve as a basis for distinguishing among the three plant types. The absorption depths of non-white spot and white spot plant coverings at 670 nm also increased with increasing NDVI values. The absorption positions of pure white spots in the visible spectrum were 430, 530, and 690 nm. After plants attached to the white spots, the 430 nm absorption position disappeared while that at 530 nm shifted in the shortwave direction. The absorption position at 690 nm was converted into that of chlorophyll. This study provides a reference for quantitatively investigating the color tones of the Danxia rock walls using VNIR reflectance spectroscopy.
Key words: Danxia Mountain; VNIR; red rock walls; hue; NDVI; northern Guangdong
Guifang Zhang , Yumeng Ye , Qiang Fu , Hongwei Li , Ke Zhang , Zhijun Yang , Tonghao Wang , Feifan Lu . VNIR Characteristics of Rock Wall Hues at Danxia Mountain, Northern Guangdong, China[J]. Tropical Geography, 2024 , 44(9) : 1702 -1718 . DOI: 10.13284/j.cnki.rddl.20231011
图1 丹霞山研究区域地质图(a. 研究区位置;b. 研究区地层图;c. 采样点分布图;d. 摩崖石刻采样剖面;e. 锦石岩寺采样剖面) Fig.1 Geological maps of the Danxia Mountain research area(a. the location of the research area; b. the stratigraphic map of the study area;c. the distribution of sampling points; d&e. the measurement profiles of Moyashike and Jinshiyan Temple, respectively) |
表1 丹霞山陡崖野外VNIR光谱数据采集情况及数量Table 1 Collection and quantity of VNIR spectral data in the field of Danxia Mountain area |
采集地 | 天气 | 地物类型 | 地层 | 采集 点位数 | 采集数量/个 | |||||
---|---|---|---|---|---|---|---|---|---|---|
红色 表面 | 橘色 表面 | 纯净 白斑 | 岩生 植物 | 非白斑岩生植物覆盖 | 白斑岩生 植物覆盖 | |||||
长老峰 | 晴转多云 | 砂岩,细砂岩,砾岩, 苔藓,地衣 | 丹霞组第二段(K2 d 2) | 133 | 21 | 40 | — | 19 | 41 | 12 |
丹霞组第三段(K2 d 3) | 23 | 2 | — | — | — | 10 | 11 | |||
巴寨 | 晴 | 细砂岩,地衣 | 丹霞组第二段(K2 d 2) | 6 | 5 | — | — | — | 1 | — |
阳元山 | 多云转晴 | 细砂岩,苔藓,地衣 | 丹霞组第三段(K2 d 3) | 67 | 14 | — | — | 12 | 25 | 16 |
景区周边 | 多云转晴 | 细砂岩,粉砂岩 | 丹霞组第一段(K2 d 1) | 21 | 12 | — | 6 | 3 | — | — |
章桂芳:论文选题和构思,实验方案设计,论文主体框架撰写;
叶雨朦:光谱数据采集、整理和处理,论文撰写;
傅 强:定量色调计算;
李宏卫:基础地质数据提供,结果讨论;
张 珂:论文选题方向指导,结果讨论;
王同皓、陆非凡:光谱数据采集。
Bechtel R, Rivard B, and Sánchez-Azofeifa A. 2002. Spectral Properties of Foliose and Crustose Lichens Based on Laboratory Experiments. Remote Sensing of Environment, 82(2): 389-396.
|
Bensing J P, Mozley P S, and Dunbar N W. 2005. Importance of Clay in Iron Transport and Sediment Reddening: Evidence from Reduction Features of the Abo Formation, New Mexico, U.S.A. Journal of Sedimentary Research, 75(4): 562-571.
|
Bronson K F, Booker J D, Keeling J W, Boman R K, Wheeler T A, Lascano R J, and Nichols R L.2005. Cotton Canopy Reflectance at Landscape Scale as Affected by Nitrogen Fertilization. Agronomy Journal, 97(3): 654-660.
|
陈留勤,郭福生,梁伟,蒋星波. 2013. 江西抚崇盆地上白垩统河口组砾石统计特征及其地质意义. 现代地质,27(3):568-576.
Chen Liuqin, Guo Fusheng, Liang Wei, and Jiang Xingbo. 2013. Gravel Fabric Characteristics of the Upper Cretaceous Hekou Formation in Fuzhou-Chongren Basin, Jiangxi and the Geological significance. Geoscience, 27(3): 568-576.
|
陈留勤,李鹏程,郭福生,刘鑫,李馨敏. 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报,37(1):17-29.
Chen Liuqin, Li Pengcheng, Guo Fusheng, Liu Xin, and Li Xinmin. 2019. Facies Analysis and Paleoclimate lmplications of the Late Cretaceous Danxia Formation in the Danxia Basin, Northern Guangdong Province, South China. Acta Sedimentologica Sinica, 37(1): 17-29.
|
陈睿华,尚天浩,张俊华,王怡婧,贾科利. 2022. 不同光谱类型对银川平原土壤含盐量反演精度的影响与校正. 应用生态学报,33(4):922-930.
Chen Ruihua, Shang Tianhao, Zhang Junhua, Wang Yijing, and Jia Keli. 2022. Effects of Different Spectra Types on the Accuracy and Correction of Soil Saltcontent Inversion in Yinchuan Plain, China. Chinese Journal of Applied Ecology, 33(4): 922-930.
|
陈宇波,薛云,邹滨,文益民,周松林. 2020. 有色金属矿区土壤铬污染遥感反演研究. 中南大学学报(自然科学版),51(10):2876-2884.
Chen Yubo, Xue Yun, Zou Bin, Wen Yimin, and Zhou Songlin. 2020. Research on Remote Sensing Retrieval of Soil Chromium Pollution in Nonferrous Metal Mining Area. Journal of Central South University(Science and Technology), 51(10): 2876-2884.
|
Clark R N and Roush T L. 1984. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. Journal of Geophysical Research: Solid Earth, 89(B7): 6329-6340.
|
丛丽娟,岑况,余学中,黄增芳,冷福荣. 2013. 朱拉扎嘎金矿区地物光谱特征与地球化学成分之间的关系. 中南大学学报(自然科学版),44(1):266-274.
Cong Lijuan, Cen Kuang, Yu Xuezhong, Huang Zengfang, and Leng Furong. 2013. Relationship between Spectral Characteristics and Geochemical Composition of Zhulazhaga Gold Deposit. Journal of Central South University(Science and Technology), 44(1): 266-274.
|
Crowley J K, Brickey D W, and Rowan L C. 1989. Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination Using Relative Absorption Band-Depth Images. Remote Sensing of Environment, 29(2): 121-134.
|
丁文清,丁林. 2022. 岩矿高光谱遥感及其在青藏高原的应用前景. 地质科学,57(3):924-944.
Ding Wenqing and Ding Lin. 2022. Hyperspectral Remote Sensing of Rock and Mineral and Its Application Prospects on the Tibetan Plateau. Chinese Journal of Geology, 57(3): 924-944.
|
Duranovich F N, Yule I J, Lopez-Villalobos N, Shadbolt N M, Draganova I, and Morris S T. 2020. Using Proximal Hyperspectral Sensing to Predict Herbage Nutritive Value for Dairy Farming. Agronomy, 10(11): 1826.
|
房世波,张新时. 2011. 苔藓结皮影响干旱半干旱植被指数的稳定性.光谱学与光谱分析,31(3):780-783.
Fang Shibo and Zhang Xinshi. 2011. Impact of Moss Soil Crust on Vegetation Indexes Interpretation. Spectroscopy and Spectral Analysis, 31(3): 780-783.
|
Feng J, Rivard B, Rogge D, and Sánchez-Azofeifa A. 2013. The Longwave Infrared (3-14 μm) Spectral Properties of Rock Encrusting Lichens Based on Laboratory Spectra and Airborne SEBASS Imagery. Remote Sensing of Environment, 131: 173-181.
|
Feng J, Rogge D, and Rivard B. 2018. Comparison of Lithological Mapping Results from Airborne Hyperspectral VNIR-SWIR, LWIR and Combined Data. International Journal of Applied Earth Observation and Geoinformation, 64: 340-353.
|
Gaffey S J. 1987. Spectral Reflectance of Carbonate Minerals in the Visible and Near Infrared (0.35-2.55 µm): Anhydrous Carbonate Minerals. Journal of Geophysical Research: Solid Earth, 92(B2): 1429-1440.
|
Gomez C, Lagacherie P, and Coulouma G. 2008. Continuum Removal Versus PLSR Method for Clay and Calcium Carbonate Content Estimation from Laboratory and Airborne Hyperspectral Measurements. Geoderma, 148(2): 141-148.
|
郭福生,陈留勤,严兆彬,刘富军,潘志新,张炜强,胡海平. 2020. 丹霞地貌定义、分类及丹霞作用研究. 地质学报,94(2):361-374.
Guo Fusheng, Chen Liuqin, Yan Zhaobin, Liu Fujun, Pan Zhixin, Zhang Weiqiang, and Hu Haiping. 2020. Definition, Classification, and Danxianization of Danxia Landscapes. Acta Geologica Sinica, 94(2): 361-374.
|
郭福生,姜勇彪,胡中华,刘林清,李虹. 2011. 龙虎山世界地质公园丹霞地貌成景系统特征及其演化. 山地学报,29(2):195-201.
Guo Fusheng, Jiang Yongbiao, Hu Zhonghua, Liu Linqing, and Li Hong. 2011. Evolution and Genesis System Features of Danxia Lanform in Longhushan World Geopark. Mountain Research, 29(2): 195-201.
|
Guzmán Q J A, Laakso K, López-Rodríguez J C, Rivard B, and Sánchez-Azofeifa G A. 2020. Using Visible-Near-Infrared Spectroscopy to Classify Lichens at a Neotropical Dry Forest. Ecological Indicators, 111: 105999.
|
贺倩,姬鑫慧,洪宇辰. 2019. 入侵杂草紫茎泽兰的高光谱特征提取和分析. 科技创新与应用,(7):44-47.
He Qian, Ji Xinhui, and Hong Yuchen. 2019. Hyperspectral Feature Extraction and Analysis of the Invasive Eupatorium Adenophorum. Technology Innovation and Application, (7): 44-47.
|
He W, Yang Z, Hu J, Zhang K, and Li H. 2023. Color Origin of Red Beds within the Danxia Basin, Southern China. Minerals, 13(8): 1054.
|
Hou L, Li X, and Li F. 2019. Hyperspectral-Based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. Journal of Environmental Quality, 48(1): 57-63.
|
Hunt G, Salisbury J, and Lenhoff C. 1971. Visible and Near-Infrared Spectra of Mineral and Rocks, 3. Oxides and Hydroxides. Modern Geology, 2: 195-205.
|
Shonk J L, Gaultney L D, Schulze D G, and Scoyoc G E V. 1991. Spectroscopic Sensing of Soil Organic Matter Content. Transactions of the ASAE, 34(5): 1978-1984.
|
Jensen J R. 2015. Introductory Digital Image Processing: A Remote Sensing Perspective. USA: Prentice Hall Press.
|
姜勇彪,郭福生,黎广荣,李蓉,楼法生,汪震,陈留勤,郄海满,闫罗彬,李益朝,凡秀君. 2024. 江西丹霞地貌演化阶段与分布及其构造控制探讨. 地质论评,70(1):44-58.
Jiang Yongbiao, Guo Fusheng, Li Guangrong, Li Rong, Lou Fasheng, Wang Zhen, Chen Liuqin, Xi Haiman, Yan Luobin, Li Yichao, and Fan Xiujun. 2024. Study on the Evolution of Danxia Landform in Jiangxi Province and Its Structural Factors. Geological Review, 70(1): 44-58.
|
蒋金豹,Michael D Steven,何汝艳,蔡庆空. 2013. 水浸胁迫下植被高光谱遥感识别模型对比分析. 光谱学与光谱分析,33(11):3106-3110.
Jiang Jinbao, Michael D Steven, He Ruyan, and Cai Qingkong. 2013. Comparison and Analysis of Hyperspectral Remote Sensing Ldentifiable Models for Different Vegetation under Waterlogging Stress. Spectroscopy and Spectral Analysis, 33(11): 3106-3110.
|
Karnieli A, Shachak M, Tsoar H, Zaady E, Kaufman Y, Danin A, and Porter W.1996. The Effect of Microphytes on the Spectral Reflectance of Vegetation in Semiarid Regions. Remote Sensing of Environment, 57(2): 88-96.
|
Kooistra L, Salas E A L, Clevers J G P W, Wehrens R, Leuven R S E W, Nienhuis P H, and Buydens L M C. 2004. Exploring Field Vegetation Reflectance as an Indicator of Soil Contamination in River Floodplains. Environmental Pollution, 127(2): 281-290.
|
Kruse F A. 1988. Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada, and California. Remote Sensing of Environment, 24(1): 31-51.
|
Lagacherie P, Baret F, Feret J B, Madeira Netto J, and Robbez-Masson J M.2008. Estimation of Soil Clay and Calcium Carbonate Using Laboratory, Field and Airborne Hyperspectral Measurements. Remote Sensing of Environment, 112(3): 825-835.
|
Li H, Wei Zh, Wang X, and Xu F. 2020. Spectral Characteristics of Reclaimed Vegetation in a Rare Earth Mine and Analysis of its Correlation with the Chlorophyll Content. Journal of Applied Spectroscopy, 87(3): 553-562.
|
Li X and Cai Y.2013. Constraining the Colouration Mechanisms of Cretaceous Oceanic Red Beds Using Diffuse Reflectance Spectroscopy. Cretaceous Research, 46: 257-266.
|
刘江龙. 2021. 湖南崀山丹霞地貌景观特征及其世界自然遗产价值. 商业经济,(12):151-153.
Liu Jianglong. 2021. Landform and Landscape Characteristics of Danxia in Langshan, Hunan Province and Its World Natural Heritage Value. Business & Economy, (12): 151-153.
|
罗曦,杨志军,张珂,王汉雨,都衡恒,何旺. 2021. 广东丹霞山红色成因的矿物学研究. 矿物学报,41(6):704-712.
Luo Xi, Yang Zhijun, Zhang Ke, Du Hengheng, and He Wang. 2021. A Mineralogical Study on the Genesis of Red Color of the Danxia Mountain in Guangdong Province. Acta Mineralogica Sinica, 41(6): 704-712.
|
Meng X, Li G K, Long X, Li S, and Ji J K. 2023. Quantifying Soil Goethite/Hematite Ratios: A New Method Based on Diffuse Reflectance Spectra. Geophysical Research Letters,50(8): e2022GL102280.
|
孟先强,季峻峰. 2020. 一种漫反射光谱定量沉积物中针铁矿与赤铁矿比值的方法:CN202010556006.2. 2020-08-18.
Meng Xianqiang and Ji Junfeng. 2020. A Method for Quantifying the Ratio of Goethite to Hematite in Sediments Using Diffuse Reflectance Spectroscopy: CN202010556006.2. 2020-08-18.
|
Morgan C L S, Waiser T H, Brown D J, and Hallmark C T. 2009. Simulated in Situ Characterization of Soil Organic and Inorganic Carbon with Visible Near-Infrared Diffuse Reflectance Spectroscopy. Geoderma, 151(3): 249-256.
|
Morison M, Cloutis E, and Mann P. 2014. Spectral Unmixing of Multiple Lichen Species and Underlying Substrate. International Journal of Remote Sensing, 35(2): 478-492.
|
彭华,潘志新,闫罗彬,Scott Simonson. 2013. 国内外红层与丹霞地貌研究述评. 地理学报,68(9):1170-1181.
Peng Hua, Pan Zhixin, Yan Luobin, and Scott S. 2013. A Review of the Research on Red Beds and Danxia Landform. Acta Geographica Sinica, 68(9): 1170-1181.
|
Ogen Y, Denk M, Glaesser C, Eichstaedt H, Kahnt R, Loeser R, Suppes R, Chimeddorj M, Tsedenbaljir T, Alyeksandr U, and Oyunbuyan T. 2021. Quantification of the Spectral Variability of Ore-Bearing Granodiorite under Supervised and Semisupervised Conditions: An Upscaling Approach. Journal of Spectroscopy, 2021: e2580827.
|
彭华,刘盼,张桂.2018. 中国东南部丹霞地貌区小尺度植被分异结构研究. 地理科学,38(6):944-953.
Peng Hua, Liu Pan and Zhang Guihua.2018. Small Scale Vegetation Differentiation Structure in Danxia Landforms, Southeast China. Scientia Geographica Sinica, 38(6): 944-953.
|
彭少麟,廖文波,李贞,贾凤龙,王英永,常弘,曾曙才,金建华,辛国荣,陈宝明,侯荣丰. 2011. 广东丹霞山动植物资源综合科学考察. 北京:科学出版社.
Peng Shaolin, Liao Wenbo, Li Zhen, Jia Fenglong, Wang Yingyong, Chang Hong, Zeng Shucai, Jin Jianhua, Xin Guorong, Chen Baoming, and Hou Rongfeng. 2011. Comprehensive Scientific Investigation of Animal and Plant Resources in Danxia Mountain, Guangdong. Beijing: Science Press.
|
Prasad K A, Gnanappazham L, Selvam V, Ramasubramanian R, and Kar C S. 2015. Developing a Spectral Library of Mangrove Species of Indian East Coast Using Field Spectroscopy. Geocarto International, 30(5): 580-599.
|
齐德利,于蓉,张忍顺,葛云健,李加林. 2005. 中国丹霞地貌空间格局. 地理学报,15(1):41-52.
Qi Deli, Yu Rong, Zhang Renshun, Ge Yunjian, and Li Jialin. 2005. On the Spatial Pattern of Danxia Landform in China. Acta Geographica Sinica, 15(1): 41-52.
|
齐德利,陈致均,王随继,王志华,景福怀. 2015. 崆峒山丹霞地貌地层归属演化及地貌年龄. 山地学报,33(4):408-415.
Qi Deli, Chen Zhijun, Wang Suji, Wang Zhihua, and Jing Fuhuai. 2015.Stratigraphic Classification, Evolution Stage and Geomorphologic Age of Kongtongshan Danxia Landform in Pingliang, Gansu, China. Mountain Research, 33(4): 408-415.
|
秦效荣,姚玉增,何宏平,谭伟,马灵涯,孙一凡,王春来,黄健. 2020. 广东梅州花岗岩风化壳剖面的可见光-短波红外反射光谱特征及其对风化强度的指示. 地球化学,49(4):422-434.
Qin Xiaorong, Yao Yuzeng, He Hongping, Tan Wei, Ma Lingya, Sun Yifan, Wang Chunlai, and Huang Jian. 2020. Visible to Shortwave-Infrared Spectroscopic Characteristics and Weathering Intensity Indicators of a Weathering-Crust-Type REE Deposit in Granite Bedrock, from Meizhou, Guangdong Province. Geochimica, 49(4): 422-434.
|
Ren H, Zhou G, and Zhang X, 2011. Estimation of Green Aboveground Biomass of Desert Steppe in Inner Mongolia Based on Red-Edge Reflectance Curve Area Method. Biosystems Engineering, 109(4): 385-395.
|
Rikkinen J. 1994.What's behind the Pretty Colours: A Study on the Photobiology of Lichens. The Bryologist, 99(3): 375.
|
Rodger A and Cudahy T. 2009. Vegetation Corrected Continuum Depths at 2.20µm: An Approach for Hyperspectral Sensors. Remote Sensing of Environment, 113(10): 2243-2257.
|
Rouse J W, Haas R H, Schell J A, and Deering D W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS In: Freden S C, Mercanti E P, Becker M. Proceedings 3rd Earth Resources Technology Satellite (ERTS) Symposium. Washington D C: NASA, SP-351.
|
Salehi S, Rogge D, Rivard B, Heincke B.H, and Fensholt R. 2017. Modeling and Assessment of Wavelength Displacements of Characteristic Absorption Features of Common Rock Forming Minerals Encrusted by Lichens. Remote Sensing of Environment, 199: 78-92.
|
Sherman D M and Waite T D, 1985. Electronic Spectra of Fe3+ Oxides and Oxide Hydroxides in the Near IR to Near UV. American Mineralogist, 70(11): 1262-1269.
|
史月欣,陈留勤,杜丁丁,柴乐,王子涵. 2023. 丹霞山陡坡上风化洞穴的基本特征及成因探讨. 热带地理,43(1):103-114.
Shi Yuexin, Chen Liugin, Du Dingding, Chai Le, and Wang Zihan. 2023. Basic Characteristics and Genesis of Cavernous Weathering Features on the Steep Slopes of Danxia Landscape in Danxiashan UNESCO Global Geopark. Tropical Geography, 43(1): 103-114.
|
谭艳,朱诚,吴立,孙伟,王晓翠,贾天骄,彭华,侯荣丰. 2015. 广东丹霞山砂岩蜂窝状洞穴及白斑成因. 山地学报,33(3):279-287.
Tan Yan, Zhu Cheng, Wu Li, Sun Wei, Wang Xiaocui, Jia Tianjiao, Peng Hua, and Hong Rongfeng.2015. Geomophogensis on Sandstone Honeycombs and White Spot in the Mt. Danxiashan,Guangdong Province, South China. Mountain Research, 33(3): 279-287.
|
Teillet P M, Staenz K, and William D J.1997. Effects of Spectral, Spatial, and Radiometric Characteristics on Remote Sensing Vegetation Indices of Forested Regions. Remote Sensing of Environment, 61(1): 139-149.
|
汪恩良,于俊,韩红卫,许春光,胡胜博.2020. 室内辐照试验用太阳模拟器设计. 东北农业大学学报,51(12):90-98.
Wang Enliang, Yu Jun, Han Hongwei, Xu Chunguang, and Hu Shengbo. 2020. Design of a Solar Simulator for Indoor Irradiation Experiments. Journal of Northeast Agricultural University, 51(12): 90-98.
|
Wang H, Peng J, Xie C, Bao Y, and He Y. 2015. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 15(5): 11889-11927.
|
王建刚,叶发旺,邱骏挺,孟树,张川. 2020. 遥感岩性识别分类研究. 世界核地质科学,37(1):10-22.
Wang Jiangang, Ye Fawang, Qiu Junting, Meng Shu, and Zhang Chuan. 2020. Review on Remote Sensing Method for the Identification and Classification of Lithology. World Nuclear Geoscience, 37(1): 10-22.
|
王润生,熊盛青,聂洪峰,梁树能,齐泽荣,杨金中,闫柏琨,赵福岳,范景辉,童立强,林键,甘甫平,陈微,杨苏明,张瑞江,葛大庆,张晓坤,张振华,王品清,郭小方,李丽. 2011. 遥感地质勘查技术与应用研究. 地质学报,85(11):1699-1743.
Wang Runsheng, Xiong Shengqing, Nie Hongfeng, Liang Shuneng, Qi Zerong, Yang Jinzhong, Yan Baikun, Zhao Fuyue, Fan Jinghui, Tong Liqiang, Lin Jian, Gan Fuping, Chen Wei, Yang Suming, Zhang Ruijiang, Ge Daging, Zhang Xiaokun, Zhang Zhenhua, Wang Pinqing, Guo Xiaofang, and Li Li. 2011. Remote Sensing Technology and Its Application in Geological Exploration. Acta Geologica Sinica, 85(11): 1699-1743.
|
王珊珊,周可法,周曙光,陈艺超. 2018. 风化面、荒漠漆及地衣在岩矿表面对高光谱遥感的影响. 地质科学,53(2):739-748.
Wang Shanshan, Zhou Kefa, Zhou Shuguang, and Chen Yichao. 2018. Effects of Weathering, Desert-Varnish and Lichens of Rock Surface on Hyperspectral Remote Sensing. Chinese Journal of Geology, 53(2): 739-748.
|
王延霞,吴见,周亮广,侯兰功,王岽,曹敏.2015. 不同粒度条件下矿物光谱变化分析. 光谱学与光谱分析,35(3):803-808.
Wang Yanxia, Wu Jian, Zhou Liangguang, Hou Langing, Wang Dong, and Cao Min. 2015. Mineral Spectrum Change Analysis under the Conditions of Different Particle Size. Spectroscopy and Spectral Analysis, 35(3): 803-808.
|
吴甲添,刘建雄,廖示庭. 2001. 丹霞盆地地质特征和演化. 中国区域地质,(3):274-279.
Wu Jiatian, Liu Jianxiong, and Liao Shiting. 2001. Geological Characteristics, Evolution of the Danxia Basin. Geological Bulletin of China,(3): 274-279.
|
Xiao Y, Li Y, Ding H, Li Y, and Lu A. 2018. The Fine Characterization and Potential Photocatalytic Effect of Semiconducting Metal Minerals in Danxia Landforms. Minerals, 8(12): 554.
|
许宁,胡玉新,雷斌,洪友堂,党福星. 2011. 基于改进光谱特征拟合算法的高光谱数据矿物信息提取. 光谱学与光谱分析,31(6):1639-1643.
Xu Ning, Hu Yuxin, Lei Bin, Hong Youtang, and Dang Fuxing. 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31(6): 1639-1643.
|
燕守勋,张兵,赵永超,郑兰芬,童庆禧,杨凯. 2003. 矿物与岩石的可见—近红外光谱特性综述. 遥感技术与应用,(4):191-201.
Yan Shouxun, Zhang Bin, Zhao Yongchao, Zheng Lanfen, Tong Qingxi, and Yang Kai. 2003. Summarizing the VlS-NlR Spectra of Minerals and Rocks. Remote Sensing Technology and Application, (4): 191-201.
|
杨志军,都衡恒,罗曦,张珂,何旺,刘逸,毛梦嫒. 2022. 广东丹霞山红色岩层中白斑成因的矿物学研究. 矿产与地质,36(1):129-137.
Yang Zhijun, Du Hengheng, Luo Xi, Zhang Ke, He Wang, Liu Yi, and Mao Mengyuan. 2022. Mineralogy Study on the Origin of White Spots in the Red Strata of Danxia Mountain, Guangdong. Mineral Resources and Geology, 36(1): 129-137.
|
张恩然. 2005. 武夷山地衣区系的初步研究. 济南:山东师范大学.
Zhang Enran. 2005. The Primary Study on the Flora of Mt. Wuyi. Ji'nan: Shandong Normal University.
|
章桂芳,陈凯伦,张浩然,张慧. 2018. 基于DEM的丹霞地貌演化阶段划分. 中山大学学报(自然科学版),57(2):12-21.
Zhang Guifang, Chen Kailun, Zhang Haoran, and Zhang Hui. 2018. The Evolution Stage Decision of Danxia Landform Based on Digital Elevation Model (DEM). Acta Scientiarum Naturalium Universitatis Sunyatseni, 57(2): 12-21.
|
赵汀,赵逊,彭华,侯荣丰. 2014. 关于丹霞地貌概念和分类的探讨. 地球学报,35(3):375-382.
Zhao Ting, Zhao Xun, Peng Hua, and Hou Rongfeng. 2014. A Tentative Discussion on the Definition and Classification of Danxia Landform. Acta Geoscientica Sinica, 35(3): 375-382.
|
朱诚,吴立,朱同新,侯荣丰,胡智农,谭艳,孙伟,贾天骄,彭华. 2015. 华南丹霞山地区丹霞造景地貌成因实验地貌学研究(英文). 地理学报,25(8):943-966.
Zhu Cheng, Wu Li, Zhu Tongxin, Hou Rongfeng, Hu Zhinong, Tan Yan, Sun Wei, Jia Tianjiao, and Peng Hua. 2015. Experimental Studies on the Danxia Landscape Morphogenesis in Mt. Danxiashan, South China. Journal of Geographical Sciences, 25(8): 943-966.
|
/
〈 |
|
〉 |