Evolution of the Structure of Double-Layer Technology Cooperation-Transfer Networks and Its Impact on Innovation Capabilities
Received date: 2024-04-10
Revised date: 2024-08-19
Online published: 2024-12-11
With the increasing connectivity across regions of the modern society, innovation networks have become a prominent paradigm in the field of innovation geography. Considering the ongoing regional integration of the Yangtze River Delta and current challenges posed by uneven development in innovation capabilities, examining the impact of inter-urban innovation networks on the enhancement of urban innovation capacity holds substantial research significance. However, current scholarly research seldom explores the evolution of dual-layer networks. Furthermore, studies on the effects of innovation networks tend to focus only on their direct impacts on network entities, with limited analyses of innovation proximity and spillover effects. Therefore, this study constructed a double-layer innovation network for the Yangtze River Delta for the period 2010 to 2019 based on patent collaboration and transfer data. It characterizes the basic evolutionary features of this double-layer network, analyzes the structural development differences between the collaboration and transfer subnetworks, investigates the dynamics of their coupling evolution, and explores the spatial spillover effects of the dual-layer network structure on urban innovation capacity. The findings reveal that: (1) Internal connectivity within the double-layer innovation network of the Yangtze River Delta has strengthened, enhancing accessibility and efficiency while reducing internal centripetal tendencies, thus achieving increasingly coordinated intercity innovation linkages; (2) The initial distribution of the transfer and collaboration networks was concentrated along the southeastern coastal areas, but subsequent polarization eased, with a more marked decrease in hierarchical structure in the transfer network, which also exhibited a higher level of development compared to the collaboration network; (3) The overall coupling coordination of the two sub-networks has risen, although with increased dispersion, leading to pronounced polarization but without severe effects; (4) Regression results from spatial econometric models indicate that node strength and importance within the double-layer network positively influence urban innovation capacity, with both showing significant negative spatial spillover effects. Urban economic vitality and consumer demand are positively correlated with local innovation capacity; the enhancement of economic vitality in neighboring cities also promotes local innovation capacity. However, the optimization of industrial structures in adjacent cities negatively impacts local innovation capacity. These findings suggest that the Yangtze River Delta should continue to implement integration policies, with core cities taking the lead and less-developed cities actively integrating into the innovation network to promote the region's overall enhancement of innovation capacity. Moreover, cities should not only draw on advanced external expertise but also increase their own technological outputs, balancing both "bringing in" and "going out." This approach not only strengthens the coupling between the two subnetworks, but also enables overall optimization of the innovation network. This study provides novel and profound insights into the construction of intercity innovation networks in the Yangtze River Delta and offers valuable references for improving and coordinating urban innovation capacity across the region.
Yuling Chen , Hexiang Xing , Debin Du . Evolution of the Structure of Double-Layer Technology Cooperation-Transfer Networks and Its Impact on Innovation Capabilities[J]. Tropical Geography, 2024 , 44(12) : 2180 -2191 . DOI: 10.13284/j.cnki.rddl.20240230
图4 2010—2019年长三角地区技术合作与转让网络节点位序-规模分布Fig.4 Nodal rank-size distribution of the Yangtze River Delta region technology cooperation and transfer network from 2010 to 2019 |
表1 2010—2019年长三角地区技术合作与转让网络节点位序-规模拟合结果Table 1 Results of node rank rank-size fitting for the Yangtze River Delta region technology and transfer network from 2010 to 2019 |
拟合值 | 合作网络 | 转让网络 | |||||
---|---|---|---|---|---|---|---|
2010年 | 2015年 | 2019年 | 2011年 | 2015年 | 2019年 | ||
q | 0.933 | 0.844 | 0.800 | 0.858 | 0.647 | 0.630 | |
a | 4.879 | 5.168 | 5.667 | 4.105 | 4.644 | 5.441 | |
R 2 | 0.862 | 0.906 | 0.906 | 0.774 | 0.824 | 0.705 |
表2 2010—2019年长三角城市创新能力的全局莫兰指数Table 2 Global Moran Index of innovation capacity of the Yangtze River Delta Cities during 2010-2019 |
年份 | I | Z | P值 |
---|---|---|---|
2010 | 0.123 | 3.660 | 0.000 |
2011 | 0.139 | 3.813 | 0.000 |
2012 | 0.138 | 3.847 | 0.000 |
2013 | 0.137 | 3.861 | 0.000 |
2014 | 0.108 | 3.645 | 0.000 |
2015 | 0.114 | 3.805 | 0.000 |
2016 | 0.123 | 3.853 | 0.000 |
2017 | 0.117 | 3.880 | 0.000 |
2018 | 0.116 | 3.774 | 0.000 |
2019 | 0.137 | 4.120 | 0.000 |
表3 LM、LR、Hausman检验结果Table 3 Results of LM, LR, Hausman test |
检验 | 统计值 | P值 |
---|---|---|
LM-error | 118.880*** | 0.000 |
Robust LM-error | 148.950*** | 0.000 |
LM-lag | 26.515*** | 0.000 |
Robust LM-lag | 56.585*** | 0.000 |
LR-error | 27.10*** | 0.000 1 |
LR-lag | 22.64*** | 0.006 4 |
Hausman | 86.89*** | 0.000 |
个体固定效应 | 70.98*** | 0.000 |
时间固定效应 | 1 117.81*** | 0.000 |
|
表4 SDM模型计算结果Table 4 Calculation results of SDM model |
变量 | OLS | SDM | |||
---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | ||
lnpagerank | 0.254***(7.79) | 0.015*(1.84) | |||
lnstrength | 0.154***(9.25) | 0.012**(2.41) | |||
lnind | 2.118***(14.35) | 1.632***(10.28) | 0.013(0.13) | 0.000 1(0.00) | |
lnvit | 0.605***(17.14) | 0.542***(14.90) | 0.186***(3.76) | 0.177***(3.60) | |
lncon | 0.133***(3.46) | 0.112***(2.97) | 0.149***(6.14) | 0.148***(6.13) | |
W * lnpagerank | -0.204***(-3.39) | ||||
W * lnstrength | -0.132***(-3.34) | ||||
W * lnind | -3.654***(-4.16) | -3.597***(-4.09) | |||
W * lnvit | 1.327** (-2.16) | 1.235**(2.04) | |||
W * lncon | 0.036(0.13) | 0.049(0.17) | |||
ρ | -1.503***(-4.58) | -1.475***(-4.51) |
|
表5 直接效应、间接效应和总效应结果Table 5 Results of direct, indirect and total effect |
变量 | 直接效应 | 间接效应 | 总效应 | |||||
---|---|---|---|---|---|---|---|---|
模型3 | 模型4 | 模型3 | 模型4 | 模型3 | 模型4 | |||
lnpagerank | 0.021***(2.60) | -0.098***(-3.68) | -0.07***(-2.83) | |||||
lnstrength | 0.017***(3.21) | -0.066***(-3.75) | -0.050***(-2.71) | |||||
lnind | 0.115(1.16) | 0.098(1.00) | -1.628***(-4.01) | -1.610***(-3.95) | -1.513***(-3.89) | -1.511***(-3.86) | ||
lnvit | 0.154***(3.38) | 0.147***(3.25) | 0.467*(1.84) | 0.439*(1.74) | 0.620**(2.42) | 0.586**(2.30) | ||
lncon | 0.156***(7.09) | 0.155***(7.06) | -0.077(-0.64) | -0.070(-0.57) | 0.079(0.64) | 0.085(0.495) |
1 https://www.incopat.com/
陈毓玲:负责论文撰写与数据处理;
邢和祥:提出论文的研究方向以及理论架构;
杜德斌:负责论文的修订与完善。
Barabási A and Albert R.1999. Emergence of Scaling in Random Networks. Science, 286: 509-512.
|
Battiston F, Nicosia V, and Latora V. 2014. Structural Measures for Multiplex Networks. Physical Review E, 89(3): 032804.
|
边作为. 2023. 中国创新要素配置水平的测度及区域差异分析. 技术经济与管理研究,(4):38-43.
Bian Zuowei. 2023. Measurement of the Allocation Level of Innovation Factors in China and Analysis of Regional Differences. Technoeconomics & Management Research, (4): 38-43.
|
曾婧婧,陶文清. 2024. 科创走廊对经济的双刃剑效应:辐射还是虹吸. 科学学研究,42(12):2533-2544. [Zeng Jingjing and Tao Wenqing. 2024. The Double-Edged Sword Effect of Science and Technology Innovation Corridors on Economic Growth: Radiation or Siphon. Studies in Science of Science, 42(12): 2533-2544.
|
程开明,庄燕杰. 2012. 城市体系位序-规模特征的空间计量分析——以中部地区地级以上城市为例. 地理科学,32(8):905-912.
Cheng Kaiming and Zhuang Yanjie. 2012. Spatial Econometric Analysis of The Rank-Size Rule for Urban System: A Case of Prefectural-Level Cities in China's Middle Area. Scientia Geographica Sinica, 32(8): 905-912.
|
Chong Z and Pan S. 2020. Understanding the Structure and Determinants of City Network through Intra-Firm Service Relationships: The Case of Guangdong-Hong Kong-Macao Greater Bay Area. Cities, 103: 102738.
|
丛晓男. 2019. 耦合度模型的形式、性质及在地理学中的若干误用. 经济地理,39(4):18-25.
Cong Xiaonan. 2019. Expression and Mathematical Property of Coupling Model, and Its Misuse in Geographical Science. Economic Geography, 39(4): 18-25.
|
戴靓,刘承良,王嵩,纪宇凡,丁子军. 2022. 长三角城市科研合作的邻近性与自组织性. 地理研究,41(9):2499-2515.
Dai Liang, Liu Chengliang, Wang Song, Ji Yufan, and Ding Zijun. 2022. Proximity and Self-Organizing Mechanisms Underlying Scientific Collaboration of Cities in the Yangtze River Delta. Geographical Research, 41(9): 2499-2515.
|
戴志敏,余志伟. 2023. 互联网发展对长三角城市群创新能力的影响——兼论政府科技支持的门槛效应. 软科学,37(7):97-103.
Dai Zhimin and Yu Zhiwei. 2023. The Influence of Internet Development on the Innovation Ability of the Yangtze River Delta Urban Agglomeration. Soft Science, 37(7): 97-103.
|
De Domenico M, Solé-Ribalta A, Cozzo E, Kivela M, Moreno Y, Porter M, Gómez S, and Arenas A. 2013. Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4): 041022.
|
丁子军,王瑞霖,戴靓,陈格. 2023. 长三角城市技术创新网络的时空演化与影响机制. 资源开发与市场,39(5):573-579.
Ding Zijun, Wang Ruilin, Dai Liang, and Chen Ge. 2023. The Spatio-Temporal Evolution and Influential Mechanism of Interurban Technological Innovation Networks in the Yangtze River Delta. Resource Development & Market, 39(5): 573-579.
|
Elhorst J P. 2010. Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1): 9-28.
|
杜德斌,何舜辉. 2016. 全球科技创新中心的内涵、功能与组织结构.中国科技论坛,(2):10-15.
Du Debin and He Shunhui. 2016. The Connotation, Function and Organization of Global S&T Innovation Center. Forum on Science and Technology in China, (2): 10-15.
|
范柏乃,单世涛,陆长生. 2002. 城市技术创新能力评价指标筛选方法研究. 科学学研究,(6):663-668.
Fan Bonai, Shan Shitao, and Lu Changsheng. 2002. An Empirical Study of Evaluation System of the Urban Technology Innovation Capability. Studies in Science of Science, (6): 663-668.
|
Fan F, Lian H, and Wang S. 2020. Can Regional Collaborative Innovation Improve Innovation Efficiency? An Empirical Study of Chinese Cities. Growth and Change, 51(1): 440-463.
|
范如国. 2014. 复杂网络结构范型下的社会治理协同创新. 中国社会科学,(4):98-120,206.
Fan Yuguo. 2014. Collaborative Innovation in Social Governance in a Complex Network Structural Paradigm. Social Sciences in China, (4): 98-120, 206.
|
Feng Z, Cai H, Chen Z, and Wen Z. 2022. Influence of an Interurban Innovation Network on the Innovation Capacity of China: A Multiplex Network Perspective. Technological Forecasting and Social Change, 180: 121651.
|
高霞,陈凯华. 2015. 合作创新网络结构演化特征的复杂网络分析. 科研管理,36(6):28-36.
Gao Xia and Chen Kaihua. 2015. The Complex Network Analysis of the Structure Evolution of Collaborative Innovation Networks:An Example of the Industry-University-Research Collaboration of Chinese ICT Industry. Science Research Management, 36(6): 28-36.
|
Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente C J, Moreno Y, and Arenas A. 2013. Diffusion Dynamics on Multiplex Networks. Physical Review Letters, 110(2): 028701.
|
顾伟男,申玉铭,王书华,曾春水. 2017.科技创新能力的空间演变及其与经济发展的关系. 中国科技论坛,(9):23-29.
Gu Weinan, Shen Yuming, Wang Shuhua, and Zeng Chunshui. 2017. Spatial Evolution of China's Scientific and Technological Innovation Ability and Its Relationship with Economic Development. Forum on Science and Technology in China, (9): 23-29.
|
桂钦昌,杜德斌,刘承良,徐伟,侯纯光. 2021. 全球城市知识流动网络的结构特征与影响因素. 地理研究,40(5):1320-1337.
Gui Qinchang, Du Debin, Liu Chengliang, Xu Wei, and Hou Chun'guang. 2021. Structural Characteristics and Influencing Factors of the Global Inter-City Knowledge Flows Network. Geographical Research, 40(5): 1320-1337.
|
Granovetter M. 1985. Economic Action and Social Structure: The Problem of Embeddedness. American Journal of Sociology, 91(3): 481-510.
|
何舜辉,杜德斌,焦美琪,林宇. 2017. 中国地级以上城市创新能力的时空格局演变及影响因素分析. 地理科学,37(7):1014-1022.
He Shunhui, Du Debin, Jiao Meiqi, and Lin Yu. 2017. Spatial-Temporal Characteristics of Urban Innovation Capability and Impact Factors Analysis in China. Scientia Geographica Sinica, 37(7): 1014-1022.
|
黄丽,林诗琦,陈静. 2020. 中国区域创新能力与能源利用效率的时空耦合协调分析. 世界地理研究,29(6):1161-1171.
Huang Li, Lin Shiqi, and Chen Jing. 2020. The Spatial-Temporal Coupling Analysis of China's Regional Innovation Capability and Energy Utilization Efficiency. World Regional Studies, 29(6): 1161-1171.
|
焦敬娟,王姣娥,金凤君,王涵. 2016. 高速铁路对城市网络结构的影响研究——基于铁路客运班列分析. 地理学报,71(2):265-280.
Jiao Jingjuan, Wang Jiao'e, Jin Fengjuan, and Wang Han. 2016. Impact of High-Speed Rail on Inter-City Network Based on the Passenger Train Network in China, 2003-2013. Acta Geographica Sinica, 71(2): 265-280.
|
焦美琪,杜德斌,桂钦昌,杨文龙,侯纯光. 2019. 全球城市技术合作网络的拓扑结构特征与空间格局. 地理科学,39(10):1546-1552.
Jiao Meiqi, Du Debin, Gui Qinchang, Yang Wenlong, and Hou Chunguang. 2019. The Topology Structure and Spatial Pattern of Global City Technical Cooperation Network. Scientia Geographica Sinica, 39(10): 1546-1552.
|
科技部. 2020. 长三角科技创新共同体建设发展规划. (2020-12-20)[2024-11-03]. https://www.gov.cn/zhengce/zhengceku/2020-12/30/content_5575110.htm.
Ministry of Science and Technology. 2020. Development Plan for the Yangtze River Delta Science and Technology Innovation Community. (2020-12-20)[2024-11-03]. https://www.gov.cn/zhengce/zhengceku/2020-12/30/content_5575110.htm.
|
LeSage J and Pace R K. 2009. Introduction to Spatial Econometrics. New York: Chapman and Hall/CRC.
|
李二玲,崔之珍. 2018. 中国区域创新能力与经济发展水平的耦合协调分析. 地理科学,38(9):1412-1421.
Li Erling and Cui Zhizhen. 2018. Coupling Coordination Between China's Regional Innovation Capability and Economic Development. Scientia Geographica Sinica, 38(9): 1412-1421.
|
Li T Z, Huang X D, and Du D B. 2023 . Empirical Research on the Impact of International Trade Network of High-Tech Product on Its Global Value Chain. The Journal of International Trade & Economic Development, 33(6): 1040-1073.
|
刘承良,桂钦昌,段德忠,殷美元. 2017. 全球科研论文合作网络的结构异质性及其邻近性机理. 地理学报,72(4):737-752.
Liu Chengliang, Gui Qinchang, Duan Dezhong, and Yin Meiyuan. 2017. Structural Heterogeneity and Proximity Mechanism of Global Scientific Collaboration Network Based on Co-Authored Papers. Acta Geographica Sinica, 72(4): 737-752.
|
刘那日苏,苏月,张建江. 2020. 区域创新的空间溢出效应及其时滞变迁测度. 统计与决策,36(18):85-89.
Liu Narisu, Su Yue, and Zhang Jianjiang. 2020. Spatial Spillover Effect of Regional Innovation and Its Time-Lag Transition Measurement. Statistics & Decision, 36(18): 85-89.
|
Liu X. 2018. Dynamic Evolution, Spatial Spillover Effect of Technological Innovation and Haze Pollution in China. Energy & Environment, 29(6): 968-988.
|
龙志军,邬丽萍. 2023. 广东省城市创新能力的空间格局及其溢出效应. 科技管理研究,43(13):73-82.
Long Zhijun and Wu Liping. 2023. Spatial Pattern and Spatial Spillover Effect of Urban Innovation Capability in Guangdong Province. Science and Technology Management Research, 43(13): 73-82.
|
栾心晨,朱晟君,毛熙彦. 2023. 多尺度视角下技术转移网络对城市创新能力的影响. 地理科学,43(1):11-19.
Luan Xinchen, Zhu Shengjun, and Mao Xiyan. 2023. Impact of Technology Transfer Network on Urban Innovation Capability from a Multi-Scale Perspective. Scientia Geographica Sinica, 43(1): 11-19.
|
尚勇敏,宓泽锋. 2023. 长三角低碳技术创新合作对绿色经济增长的影响. 中国人口·资源与环境,33(10):135-145.
Shang Yongmin and Bi Zefeng. 2023. Impact of Low-Carbon Technology Innovation Cooperation in the Yangtze River Delta on Green Economic Growth. China Population, Resources and Environment, 33(10): 135-145.
|
邵云飞,谭劲松. 2006. 区域技术创新能力形成机理探析. 管理科学学报,(4):1-11.
Shao Yunfei and Tan Jingsong. 2006. Research on Mechanism and for Capacity of Regional Technological Innovation. Journal of Management Sciences in China, (4): 1-11.
|
孙宇,彭树远. 2021. 长三角城市创新网络凝聚子群发育机制研究——基于多值ERGM. 经济地理,41(9):22-30.
Sun Yu and Peng Shuyuan. 2021. Development Mechanism of Cohesive Subgroups' Urban Innovation Networks in the Yangtze River Delta:Based on the Valued ERGM. Economic Geography, 41(9): 22-30.
|
孙玉涛,刘小萌. 2017. 校企研发合作与技术转移关系——技术转移中心的调节作用. 科学学与科学技术管理,38(9):13-22.
Sun Yutao and Liu Xiaomeng. 2017. The Impact of University-Industry R&D Collaboration on Technology Transfer: The Moderator Effect of Technology Transfer Center. Science of Science and Management of S.& T, 38(9): 13-22.
|
Ter Wal A L J and Boschma R A. 2009. Applying Social Network Analysis in Economic Geography: Framing Some Key Analytic Issues. Ann. Reg. Sci., 43: 739-756.
|
王守文,徐丽洁,章杰嘉,余思明. 2023. 科学中心城市科技创新辐射效应研究——基于长三角城市群的实证. 统计与决策,39(20):72-77.
Wang Shouwen, Xu Lijie, Zhang Jiejia, and Yu Siming. 2023. Research on the Radiation Effect of Science and Technology Innovation in Science Centre Cities—Empirical Evidence Based on the Yangtze River Delta Urban Agglomeration. Statistics & Decision, 39(20): 72-77.
|
王文静,刘诗琳. 2020. 金融集聚与区域创新能力耦合协调研究. 经济问题探索,(1):147-155.
Wang Wenjing and Liu Shilin.2020. Research on the Coupling and Coordination of Financial Agglomeration and Regional Innovation Capacity. Inquiry into Economic Issues, (1): 147-155.
|
王越,王承云. 2018. 长三角城市创新联系网络及辐射能力. 经济地理,38(9):130-137.
Wang Yue and Wang Chengyun. 2018. Urban Innovation Linkage Network and Radiation Ability in Yangtze River Delta. Economic Geography, 38(9): 130-137.
|
Wu Y Z, Shi K F, Chen Z Q, Liu S R, and Chang Z J. 2022. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-14.
|
叶雷,曹贤忠,宓泽锋,周灿,曾刚. 2023. 中国高校技术转移网络的时空特征及影响因素——基于高校-城市二模网络视角. 地理研究,42(1):69-85.
Ye Lei, Cao Xianzhong, Bi Zefeng, Zhou Can, and Zeng Gang. 2023. Spatiotemporal Dynamic and Influencing Mechanism of University Technology Transfer Network in China: A University-City Bipartite Network Perspective. Geographical Research, 42(1): 69-85.
|
叶堂林,刘莹,李国梁. 2022. 创新政策、创新要素与城市群创新能力提升. 统计与决策,38(12):170-174.
Ye Tanglin, Liu Ying, and Li Guoliang. 2022. Innovation Policy, Innovation Factors and the Enhancement of Innovation Capacity of City Clusters. Statistics & Decision, 38(12):170-174.
|
尹上岗,姜晓艳,姜海宁. 2023. 长三角地区房价、创新能力与城市品质的互动关系——基于PVAR模型的分析. 地理研究,42(10):2738-2758.
Yin Shanglan, Jiang Xiaoyan, and Jiang Haining. 2023. The Relationship between Housing Price, Innovation Ability and Urban Quality in the Yangtze River Delta Region Based on the PVAR Model. Geographical Research, 42(10): 2738-2758.
|
中共中央,国务院. 2019. 中共中央 国务院印发《长江三角洲区域一体化发展规划纲要》. (2019-12-01)[2024-11-03]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm.
The Central Committee of the Communist Party of China, and the State Council. 2019. Outline of the Plan for the Integrated Development of the Yangtze River Delta Region. (2019-12-01)[2024-11-03]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm.
|
张慧一,祝滨滨. 2022. 生产性服务业集聚外部性如何影响区域创新?——基于长三角地区的实证分析. 科技管理研究,42(15):89-97.
Zhang Huiyi and Zhu Binbin. 2022. How Does the Externality of Producer Services Agglomeration Affect Regional Innovation: An Empirical Analysis Based on the Yangtze River Delta Region. Science and Technology Management Research, 42(15): 89-97.
|
张坚,黄琨,胡玥歆. 2023. 双循环格局下长三角创新生态系统协同发展溢出效应研究. 科技进步与对策,40(22):75-86.
Zhang Jian, Huang Kun, and Hu Yuexin. 2023. The Spillover Effects and Collaborative Development of Regional Innovation Ecosystem of Yangtze River Delta Under the "Dual Circulation" Pattern. Science& Technology Progress and Policy, 40(22): 75-86.
|
周灿,曾刚,曹贤忠. 2017. 中国城市创新网络结构与创新能力研究. 地理研究,36(7):1297-1308.
Zhou Can, Zeng Gang, and Cao Xianzhong. 2017. Chinese Inter-City Innovation Networks Structure and City Innovation Capability. Geographical Research, 36(7): 1297-1308.
|
Zipf G K. 1949. Human Behavior and the Principle of Least Effort. Oxford: Addison-Wesley Press.
|
/
〈 |
|
〉 |